Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanjeet Patel is active.

Publication


Featured researches published by Sanjeet Patel.


Nature Cell Biology | 2013

Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency

Rupa Sridharan; Michelle Gonzales-Cope; Constantinos Chronis; Giancarlo Bonora; Robin McKee; Chengyang Huang; Sanjeet Patel; David Lopez; Nilamadhab Mishra; Matteo Pellegrini; Michael Carey; Benjamin A. Garcia; Kathrin Plath

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) involves a marked reorganization of chromatin. To identify post-translational histone modifications that change in global abundance during this process, we have applied a quantitative mass-spectrometry-based approach. We found that iPSCs, compared with both the starting fibroblasts and a late reprogramming intermediate (pre-iPSCs), are enriched for histone modifications associated with active chromatin, and depleted for marks of transcriptional elongation and a subset of repressive modifications including H3K9me2/me3. Dissecting the contribution of H3K9 methylation to reprogramming, we show that the H3K9 methyltransferases Ehmt1, Ehmt2 and Setdb1 regulate global H3K9me2/me3 levels and that their depletion increases iPSC formation from both fibroblasts and pre-iPSCs. Similarly, we find that inhibition of heterochromatin protein-1γ (Cbx3), a protein known to recognize H3K9 methylation, enhances reprogramming. Genome-wide location analysis revealed that Cbx3 predominantly binds active genes in both pre-iPSCs and pluripotent cells but with a strikingly different distribution: in pre-iPSCs, but not in embryonic stem cells, Cbx3 associates with active transcriptional start sites, suggesting a developmentally regulated role for Cbx3 in transcriptional activation. Despite largely non-overlapping functions and the predominant association of Cbx3 with active transcription, the H3K9 methyltransferases and Cbx3 both inhibit reprogramming by repressing the pluripotency factor Nanog. Together, our findings demonstrate that Cbx3 and H3K9 methylation restrict late reprogramming events, and suggest that a marked change in global chromatin character constitutes an epigenetic roadblock for reprogramming.


Clinical Cancer Research | 2012

Integrative Survival-Based Molecular Profiling of Human Pancreatic Cancer

Timothy R. Donahue; Linh M. Tran; Reginald Hill; Yunfeng Li; Anne N. Kovochich; Joseph Hargan Calvopina; Sanjeet Patel; Nanping Wu; Antreas Hindoyan; James J. Farrell; Xinmin Li; David W. Dawson; Hong Wu

Purpose: To carry out an integrative profile of human pancreatic ductal adenocarcinoma (PDAC) to identify prognosis-significant genes and their related pathways. Experimental Design: A concordant survival-based whole genome in silico array analysis of DNA copy number, and mRNA and miRNA expression in 25 early-stage PDAC was carried out. A novel composite score simultaneously integrated gene expression with regulatory mechanisms to identify the signature genes with the most levels of prognosis-significant evidence. The predominant signaling pathways were determined via a pathway-based approach. Independent patient cohorts (n = 148 and 42) were then used as in vitro validation of the array findings. Results: The composite score identified 171 genes in which expressions were able to define two prognosis subgroups (P = 3.8e-5). Eighty-eight percent (151 of 171) of the genes were regulated by prognosis-significant miRNAs. The phosphoinositide 3-kinase/AKT pathway and SRC signaling were densely populated by prognosis-significant genes and driven by genomic amplification of SRC and miRNA regulation of p85α and CBL. On tissue microarray validation (n = 148), p85α protein expression was associated with improved survival for all patients (P = 0.02), and activated P-SRC (Y418) was associated shorter survival for patients with low-grade histology tumors (P = 0.04). Interacting P-SRC and p85α revealed that they define two distinct PDAC patient subgroups (P = 0.0066). Furthering the importance of these pathways, CBL protein expression was associated with improved survival (P = 0.03) on a separate cohort (n = 42). Conclusions: These pathways and related genes may represent putative clinical biomarkers and possible targets of individualized therapy in the distinct patient subgroups they define. Clin Cancer Res; 18(5); 1352–63. ©2012 AACR.


Stem Cells | 2012

Concise review: Pluripotency and the transcriptional inactivation of the female Mammalian X chromosome.

Alissa Minkovsky; Sanjeet Patel; Kathrin Plath

X chromosome inactivation (XCI) is a striking example of developmentally regulated, wide‐range heterochromatin formation that is initiated during early embryonic development. XCI is a mechanism of dosage compensation unique to placental mammals whereby one X chromosome in every diploid cell of the female organism is transcriptionally silenced to equalize X‐linked gene levels to XY males. In the embryo, XCI is random with respect to whether the maternal or paternal X chromosome is inactivated and is established in epiblast cells on implantation of the blastocyst. Conveniently, ex vivo differentiation of mouse embryonic stem cells recapitulates random XCI and permits mechanistic dissection of this stepwise process that leads to stable epigenetic silencing. Here, we focus on recent studies in mouse models characterizing the molecular players of this female‐specific process with an emphasis on those relevant to the pluripotent state. Further, we will summarize advances characterizing XCI states in human pluripotent cells, where surprising differences from the mouse process may have far‐reaching implications for human pluripotent cell biology. STEM CELLS 2012;30:48–54


Cell | 2014

X Chromosome Reactivation Dynamics Reveal Stages of Reprogramming to Pluripotency

Vincent Pasque; Jason Tchieu; Rahul Karnik; Molly Uyeda; Anupama Sadhu Dimashkie; Dana Case; Bernadett Papp; Giancarlo Bonora; Sanjeet Patel; Ritchie Ho; Ryan Schmidt; Robin McKee; Takashi Sado; Takashi Tada; Alexander Meissner; Kathrin Plath

Reprogramming to iPSCs resets the epigenome of somatic cells, including the reversal of X chromosome inactivation. We sought to gain insight into the steps underlying the reprogramming process by examining the means by which reprogramming leads to X chromosome reactivation (XCR). Analyzing single cells inxa0situ, we found that hallmarks of the inactive X (Xi) change sequentially, providing a direct readout of reprogramming progression. Several epigenetic changes on the Xi occur in the inverse order of developmental X inactivation, whereas others are uncoupled from this sequence. Among the latter, DNA methylation has an extraordinary long persistence on the Xi during reprogramming, and, like Xist expression, is erased only after pluripotency genes are activated. Mechanistically, XCR requires both DNA demethylation and Xist silencing, ensuring that only cells undergoing faithful reprogramming initiate XCR. Our study defines the epigenetic state of multiple sequential reprogramming intermediates and establishes a paradigm for studying cell fate transitions during reprogramming.


Human Molecular Genetics | 2012

Derivation of new human embryonic stem cell lines reveals rapid epigenetic progression in vitro that can be prevented by chemical modification of chromatin

Silvia V. Diaz Perez; Rachel Kim; Ziwei Li; Victor E. Marquez; Sanjeet Patel; Kathrin Plath; Amander T. Clark

Human embryonic stem cells (hESCs) are pluripotent cell types derived from the inner cell mass of human blastocysts. Recent data indicate that the majority of established female XX hESC lines have undergone X chromosome inactivation (XCI) prior to differentiation, and XCI of hESCs can be either XIST-dependent (class II) or XIST-independent (class III). XCI of female hESCs precludes the use of XX hESCs as a cell-based model for examining mechanisms of XCI, and will be a challenge for studying X-linked diseases unless strategies are developed to reactivate the inactive X. In order to recover nuclei with two active X chromosomes (class I), we developed a reprogramming strategy by supplementing hESC media with the small molecules sodium butyrate and 3-deazaneplanocin A (DZNep). Our data demonstrate that successful reprogramming can occur from the XIST-dependent class II nuclear state but not class III nuclear state. To determine whether these small molecules prevent XCI, we derived six new hESC lines under normoxic conditions (UCLA1-UCLA6). We show that class I nuclei are present within the first 20 passages of hESC derivation prior to cryopreservation, and that supplementation with either sodium butyrate or DZNep preserve class I nuclei in the self-renewing state. Together, our data demonstrate that self-renewal and survival of class I nuclei are compatible with normoxic hESC derivation, and that chemical supplementation after derivation provides a strategy to prevent epigenetic progression and retain nuclei with two active X chromosomes in the self-renewing state.


Journal of Virological Methods | 2011

Highly efficient large-scale lentiviral vector concentration by tandem tangential flow filtration.

Aaron R. Cooper; Sanjeet Patel; Shantha Senadheera; Kathrin Plath; Donald B. Kohn; Roger P. Hollis

Large-scale lentiviral vector (LV) concentration can be inefficient and time consuming, often involving multiple rounds of filtration and centrifugation. This report describes a simpler method using two tangential flow filtration (TFF) steps to concentrate liter-scale volumes of LV supernatant, achieving in excess of 2000-fold concentration in less than 3h with very high recovery (>97%). Large volumes of LV supernatant can be produced easily through the use of multi-layer flasks, each having 1720 cm(2) surface area and producing ∼560 mL of supernatant per flask. Combining the use of such flasks and TFF greatly simplifies large-scale production of LV. As a demonstration, the method is used to produce a very high titer LV (>10(10)TU/mL) and transduce primary human CD34+ hematopoietic stem/progenitor cells at high final vector concentrations with no overt toxicity. A complex LV (STEMCCA) for induced pluripotent stem cell (iPSC) generation is also concentrated from low initial titer and used to transduce and reprogram primary human fibroblasts with no overt toxicity. Additionally, a generalized and simple multiplexed real-time PCR assay is described for lentiviral vector titer and copy number determination.


Epigenetics & Chromatin | 2014

The Mbd1-Atf7ip-Setdb1 pathway contributes to the maintenance of X chromosome inactivation

Alissa Minkovsky; Anna Sahakyan; Elyse Rankin-Gee; Giancarlo Bonora; Sanjeet Patel; Kathrin Plath

BackgroundX chromosome inactivation (XCI) is a developmental program of heterochromatin formation that initiates during early female mammalian embryonic development and is maintained through a lifetime of cell divisions in somatic cells. Despite identification of the crucial long non-coding RNA Xist and involvement of specific chromatin modifiers in the establishment and maintenance of the heterochromatin of the inactive X chromosome (Xi), interference with known pathways only partially reactivates the Xi once silencing has been established. Here, we studied ATF7IP (MCAF1), a protein previously characterized to coordinate DNA methylation and histone H3K9 methylation through interactions with the methyl-DNA binding protein MBD1 and the histone H3K9 methyltransferase SETDB1, as a candidate maintenance factor of the Xi.ResultsWe found that siRNA-mediated knockdown of Atf7ip in mouse embryonic fibroblasts (MEFs) induces the activation of silenced reporter genes on the Xi in a low number of cells. Additional inhibition of two pathways known to contribute to Xi maintenance, DNA methylation and Xist RNA coating of the X chromosome, strongly increased the number of cells expressing Xi-linked genes upon Atf7ip knockdown. Despite its functional importance in Xi maintenance, ATF7IP does not accumulate on the Xi in MEFs or differentiating mouse embryonic stem cells. However, we found that depletion of two known repressive biochemical interactors of ATF7IP, MBD1 and SETDB1, but not of other unrelated H3K9 methyltransferases, also induces the activation of an Xi-linked reporter in MEFs.ConclusionsTogether, these data indicate that Atf7ip acts in a synergistic fashion with DNA methylation and Xist RNA to maintain the silent state of the Xi in somatic cells, and that Mbd1 and Setdb1, similar to Atf7ip, play a functional role in Xi silencing. We therefore propose that ATF7IP links DNA methylation on the Xi to SETDB1-mediated H3K9 trimethylation via its interaction with MBD1, and that this function is a crucial feature of the stable silencing of the Xi in female mammalian cells.


Cell Reports | 2017

Human Embryonic Stem Cells Do Not Change Their X Inactivation Status during Differentiation

Sanjeet Patel; Giancarlo Bonora; Anna Sahakyan; Rachel Kim; Constantinos Chronis; Justin Langerman; Sorel Fitz-Gibbon; Liudmilla Rubbi; Rhys J.P. Skelton; Reza Ardehali; Matteo Pellegrini; William E. Lowry; Amander T. Clark; Kathrin Plath

Applications of embryonic stem cells (ESCs) require faithful chromatin changes during differentiation, but the fate of the X chromosome state in differentiating ESCs is unclear. Female human ESC lines either carry two active X chromosomes (XaXa), an Xa and inactive X chromosome with or without XIST RNA coating (XiXIST+Xa;XiXa), or an Xa and an eroded Xi (XeXa) where the Xi no longer expresses XIST RNA and has partially reactivated. Here, we established XiXa, XeXa, and XaXa ESC lines and followed their X chromosome state during differentiation. Surprisingly, we found that the X state pre-existing in primed ESCs is maintained in differentiated cells. Consequently, differentiated XeXa and XaXa cells lacked XIST, did not induce X inactivation, and displayed higher X-linked gene expression than XiXa cells. These results demonstrate that X chromosome dosage compensation is not required for ESC differentiation. Our data imply that XiXIST+Xa ESCs are most suited for downstream applications and show that all other X states are abnormal byproducts of our ESC derivation and propagation method.


International Journal of Cardiology | 2014

Novel techniques of mechanical circulatory support for the right heart and Fontan circulation

Gwendolyn Derk; Hillel Laks; Reshma Biniwale; Sanjeet Patel; Kim De LaCruz; Einat Mazor; Ryan J. Williams; John Valdovinos; Daniel S. Levi; L. Reardon; Jamil Aboulhosn

BACKGROUNDnCurrently available ventricular assist devices are designed primarily for use in patients with left sided heart failure. This study evaluated the efficacy of the Jarvik 2000 ventricular assist device (VAD) as a pulmonary pump to power a Fontan circuit in a large animal model.nnnMETHODSnWithout the use of cardiopulmonary bypass, Fontan circulations were surgically created in 4 pigs (50 kg) using synthetic grafts from the inferior and superior vena cavas to the main pulmonary artery. Subsequently, the VAD was implanted within the common Fontan graft to provide a pulmonary pump. Direct chamber pressures and epicardial Doppler images were taken during the various phases of the experiment. Heart rate, femoral artery blood pressure, oxygen saturation, and aortic flow rate were continuously recorded. The outflow cannula of the VAD was then partially banded by 50% and then 75% to mimic increased afterload.nnnRESULTSnFontan and VAD implantation was successfully performed in all 4 animals. Arterial pressure and aortic flow decreased dramatically with institution of the Fontan but were restored to baseline upon activation of the VAD. The pressure within the systemic venous circulation rose precipitously with institution of the Fontan circulation and improved appropriately with activation of the VAD. Adequate perfusion was maintained during increased afterload.nnnCONCLUSIONSnAn axial flow VAD can restore normal hemodynamics and cardiac output when used as a pulmonary pump in a Fontan circulation. A VAD can rescue a failing Fontan as a bridge to transplant or recovery, even in the setting of high pulmonary resistance.


Journal of Surgical Research | 2015

p85α is a microRNA target and affects chemosensitivity in pancreatic cancer.

Paul A. Toste; Luyi Li; Brian E. Kadera; Andrew H. Nguyen; Linh M. Tran; Nanping Wu; David L. Madnick; Sanjeet Patel; David W. Dawson; Timothy R. Donahue

BACKGROUNDnWe previously identified a correlation between increased expression of the phosphoinositide 3-kinase (PI3K) regulatory subunit p85α and improved survival in human pancreatic ductal adenocarcinoma (PDAC). The purpose of this study was to investigate the impact of changes in p85α expression on response to chemotherapy and the regulation of p85α by microRNA-21 (miR-21).nnnMATERIALS AND METHODSnPDAC tumor cells overexpressing p85α were generated by viral transduction, and the effect of p85α overexpression on sensitivity to gemcitabine was tested by MTT assay. Primary human PDAC tumors were stained for p85α and miR-21 via immunohistochemistry and in situ hybridization, respectively. Additionally, PDAC cells were treated with miR-21 mimic, and changes in p85α and phospho-AKT were assessed by Western blot. Finally, a luciferase reporter assay system was used to test direct regulation of p85α by miR-21.nnnRESULTSnHigher p85α expression resulted in increased sensitivity to gemcitabine (P < 0.01), which correlated with decreased PI3K-AKT activation. Human tumors demonstrated an inverse correlation between miR-21 and p85α expression levels (r = -0.353, P < 0.001). In vitro, overexpression of miR-21 resulted in decreased levels of p85α and increased phosphorylation of AKT. Luciferase reporter assays confirmed the direct regulation of p85α by miR-21 (P < 0.01).nnnCONCLUSIONSnOur results demonstrate that p85α expression is a determinant of chemosensitivity in PDAC. Additionally, we provide novel evidence that miR-21 can influence PI3K-AKT signaling via its direct regulation of p85α. These data provide insight into potential mechanisms for the known relationship between increased p85α expression and improved survival in PDAC.

Collaboration


Dive into the Sanjeet Patel's collaboration.

Top Co-Authors

Avatar

Kathrin Plath

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nanping Wu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel S. Levi

University of California

View shared research outputs
Top Co-Authors

Avatar

Einat Mazor

University of California

View shared research outputs
Top Co-Authors

Avatar

Gwendolyn Derk

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge