Sanjeev Balakrishnan
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sanjeev Balakrishnan.
Nature | 2015
Devon A. Lawson; Nirav R. Bhakta; Kai Kessenbrock; Karin D. Prummel; Ying Yu; Alicia Zhou; Henok Eyob; Sanjeev Balakrishnan; Chih-Yang Wang; Paul Yaswen; Andrei Goga; Zena Werb
Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated by stem-like cells that proliferate and differentiate to produce advanced metastatic disease.
Nature Medicine | 2016
Roman Camarda; Alicia Y. Zhou; Rebecca A. Kohnz; Sanjeev Balakrishnan; Celine Mahieu; Brittany Anderton; Henok Eyob; Shingo Kajimura; Aaron D. Tward; Gregor Krings; Daniel K. Nomura; Andrei Goga
Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC), as compared to estrogen receptor–, progesterone receptor– or human epidermal growth factor 2 receptor–positive (RP) breast cancer. We and others have shown that MYC alters metabolism during tumorigenesis. However, the role of MYC in TNBC metabolism remains mostly unexplored. We hypothesized that MYC-dependent metabolic dysregulation is essential for the growth of MYC-overexpressing TNBC cells and may identify new therapeutic targets for this clinically challenging subset of breast cancer. Using a targeted metabolomics approach, we identified fatty acid oxidation (FAO) intermediates as being dramatically upregulated in a MYC-driven model of TNBC. We also identified a lipid metabolism gene signature in patients with TNBC that were identified from The Cancer Genome Atlas database and from multiple other clinical data sets, implicating FAO as a dysregulated pathway that is critical for TNBC cell metabolism. We found that pharmacologic inhibition of FAO catastrophically decreased energy metabolism in MYC-overexpressing TNBC cells and blocked tumor growth in a MYC-driven transgenic TNBC model and in a MYC-overexpressing TNBC patient–derived xenograft. These findings demonstrate that MYC-overexpressing TNBC shows an increased bioenergetic reliance on FAO and identify the inhibition of FAO as a potential therapeutic strategy for this subset of breast cancer.
Nucleic Acids Research | 2016
Baohui Chen; Jeffrey Hu; Ricardo Almeida; Harrison Liu; Sanjeev Balakrishnan; Christian Covill-Cooke; Wendell A. Lim; Bo Huang
In order to elucidate the functional organization of the genome, it is vital to directly visualize the interactions between genomic elements in living cells. For this purpose, we engineered the Cas9 protein from Staphylococcus aureus (SaCas9) for the imaging of endogenous genomic loci, which showed a similar robustness and efficiency as previously reported for Streptococcus pyogenes Cas9 (SpCas9). Imaging readouts allowed us to characterize the DNA-binding activity of SaCas9 and to optimize its sgRNA scaffold. Combining SaCas9 and SpCas9, we demonstrated two-color CRISPR imaging with the capability to resolve genomic loci spaced by <300 kb. Combinatorial color-mixing further enabled us to code multiple genomic elements in the same cell. Our results highlight the potential of combining SpCas9 and SaCas9 for multiplexed CRISPR-Cas9 applications, such as imaging and genome engineering.
Nature Medicine | 2016
Dai Horiuchi; Roman Camarda; Alicia Y. Zhou; Christina Yau; Olga Momcilovic; Sanjeev Balakrishnan; Alexandra Corella; Henok Eyob; Kai Kessenbrock; Devon A. Lawson; Lindsey A Marsh; Brittany Anderton; Julia Rohrberg; Ratika Kunder; Alexey V. Bazarov; Paul Yaswen; Michael T. McManus; Hope S. Rugo; Zena Werb; Andrei Goga
Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC—an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes—is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors. Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve. Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine–threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.
PLOS Genetics | 2015
Kimberley Evason; Macrina T. Francisco; Vladislava Juric; Sanjeev Balakrishnan; Maria del Pilar Lopez Pazmino; John D. Gordan; Sanjay Kakar; Jan M. Spitsbergen; Andrei Goga; Didier Y. R. Stainier
Hepatocellular carcinoma (HCC) is one of the most lethal human cancers. The search for targeted treatments has been hampered by the lack of relevant animal models for the genetically diverse subsets of HCC, including the 20-40% of HCCs that are defined by activating mutations in the gene encoding β-catenin. To address this chemotherapeutic challenge, we created and characterized transgenic zebrafish expressing hepatocyte-specific activated β-catenin. By 2 months post fertilization (mpf), 33% of transgenic zebrafish developed HCC in their livers, and 78% and 80% of transgenic zebrafish showed HCC at 6 and 12 mpf, respectively. As expected for a malignant process, transgenic zebrafish showed significantly decreased mean adult survival compared to non-transgenic control siblings. Using this novel transgenic model, we screened for druggable pathways that mediate β-catenin-induced liver growth and identified two c-Jun N-terminal kinase (JNK) inhibitors and two antidepressants (one tricyclic antidepressant, amitriptyline, and one selective serotonin reuptake inhibitor) that suppressed this phenotype. We further found that activated β-catenin was associated with JNK pathway hyperactivation in zebrafish and in human HCC. In zebrafish larvae, JNK inhibition decreased liver size specifically in the presence of activated β-catenin. The β-catenin-specific growth-inhibitory effect of targeting JNK was conserved in human liver cancer cells. Our other class of hits, antidepressants, has been used in patient treatment for decades, raising the exciting possibility that these drugs could potentially be repurposed for cancer treatment. In support of this proposal, we found that amitriptyline decreased tumor burden in a mouse HCC model. Our studies implicate JNK inhibitors and antidepressants as potential therapeutics for β-catenin-induced liver tumors.
EMBO Reports | 2017
Brittany Anderton; Roman Camarda; Sanjeev Balakrishnan; Asha Balakrishnan; Rebecca A. Kohnz; Lionel Lim; Kimberley Evason; Olga Momcilovic; Klaus Kruttwig; Qiang Huang; Guowang Xu; Daniel K. Nomura; Andrei Goga
How MYC reprograms metabolism in primary tumors remains poorly understood. Using integrated gene expression and metabolite profiling, we identify six pathways that are coordinately deregulated in primary MYC‐driven liver tumors: glutathione metabolism; glycine, serine, and threonine metabolism; aminoacyl‐tRNA biosynthesis; cysteine and methionine metabolism; ABC transporters; and mineral absorption. We then focus our attention on glutathione (GSH) and glutathione disulfide (GSSG), as they are markedly decreased in MYC‐driven tumors. We find that fewer glutamine‐derived carbons are incorporated into GSH in tumor tissue relative to non‐tumor tissue. Expression of GCLC, the rate‐limiting enzyme of GSH synthesis, is attenuated by the MYC‐induced microRNA miR‐18a. Inhibition of miR‐18a in vivo leads to increased GCLC protein expression and GSH abundance in tumor tissue. Finally, MYC‐driven liver tumors exhibit increased sensitivity to acute oxidative stress. In summary, MYC‐dependent attenuation of GCLC by miR‐18a contributes to GSH depletion in vivo, and low GSH corresponds with increased sensitivity to oxidative stress in tumors. Our results identify new metabolic pathways deregulated in primary MYC tumors and implicate a role for MYC in regulating a major antioxidant pathway downstream of glutamine.
bioRxiv | 2018
Julia Rohrberg; Alexndra Corella; Moufida Taileb; Seda Kilinc; Marie-Lena Jokisch; Roman Camarda; Alicia Zhou; Sanjeev Balakrishnan; Aaron N. Chang; Andrei Goga
The MYC oncogene promotes tumorigenesis in part by facilitating cell cycle entry thus driving cellular proliferation. Tumors that overexpress MYC frequently demonstrate aneuploidy, numerical chromosome alterations associated with highly aggressive cancers, rapid tumor evolution, and poor patient outcome. While the role of MYC in overcoming the G1/S checkpoint is well established, it remains poorly understood whether MYC induces chromosomal instability (CIN). Here, we identify a direct influence of MYC on mitotic progression. MYC overexpression induces defects in microtubule nucleation and spindle assembly promoting chromosome segregation defects, micronuclei and CIN. We examined which mitotic regulators are required for the survival of MYC-overexpressing cells and found a reliance on high TPX2 expression. TPX2, a master microtubule regulator, is overexpressed together with MYC in multiple cell lines, in mouse tumor models and in aggressive human breast cancers. High TPX2 expression is permissive for mitotic spindle assembly and chromosome segregation in cells with deregulated MYC, whereas TPX2 depletion blocks mitotic progression, induces cell death and prevents tumor growth. Importantly, attenuation of MYC expression reverses the mitotic defects observed, even in established tumor cell lines, implicating an ongoing role for high MYC in the persistence of a CIN phenotype in tumors. Here, we implicate the MYC oncogene as a regulator of spindle assembly and dynamics and identify a new MYC-TPX2 synthetic-lethal interaction that could represent a future therapeutic strategy in MYC-overexpressing cancers. Our studies suggest that blocking MYC activity can attenuate the emergence of CIN and tumor evolution.
Molecular Cancer Research | 2016
Dai Horiuchi; Alicia Y. Zhou; Alexandra Corella; Christina Yau; Sanjeev Balakrishnan; Kai Kessenbrock; Devon A. Lawson; Roman Camarda; Brittany Anderton; Alexey V. Bazarov; Henok Eyob; Julia Rohrberg; Paul Yaswen; Michael T. McManus; Hope S. Rugo; Zena Werb; Andrei Goga
The greatest clinical challenge in treating breast cancer occurs in those patients whose tumors lack expression of the estrogen and progesterone receptors and that of the HER2 oncoprotein. No targeted therapeutic strategies currently exist against this aggressive type of “triple negative” breast cancer (TNBC) due to lack of validated targets. We previously found that MYC mRNA, protein, and its signaling were disproportionally elevated in TN compared to receptor positive (RP) breast cancer. We sought to take advantage of the unique molecular feature found in this tumor type to identify potent and effective treatment strategies. Since MYC is an oncogenic transcription factor, rationally designed small molecule inhibitors that can directly inhibit its activity are not available for clinical use. An alternative approach to selectively kill MYC-driven tumors is to inhibit those proteins that are indispensable for the viability of such tumors, but are not essential in non-tumorigenic cells. This form of “indirect” treatment strategy has become known as the “synthetic-lethal” approach. To identify novel targets that are readily druggable for treating MYC-driven TNBC, we conducted a kinome MYC synthetic lethal shRNA screen in non-immortalized human mammary epithelial cells expressing a 4-hydroxytamoxifen (TAM)-activatable MycER transgene (HMEC-MycER). Of 600 human kinases targeted by 2,000 individual shRNA clones, 9 kinases were identified as hits as they were essential specifically for the MYC-activated HMEC cells. Among these hits, we focused on PIM1, a non-essential kinase, the knock-down of which had the greatest efficacy in causing cell death in the MYC-activated cells and had minimum inhibitory effect on the growth of the control cells. We determined that PIM1 expression was elevated in TN tumors and was associated with poor prognosis specifically in patients with hormone receptor-negative tumors. Small molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in a patient-derived tumor xenograft (PDX) mouse model by inhibiting oncogenic transcriptional activity of MYC while simultaneously restoring the function of the endogenous cell cycle inhibitor p27. Thus, our findings warrant clinical evaluation of small molecule PIM kinase inhibitors in patients with TN tumors that exhibit elevated MYC expression. Note: This abstract was not presented at the conference. Citation Format: Dai Horiuchi, Alicia Y. Zhou, Alexandra N. Corella, Christina Yau, Sanjeev Balakrishnan, Kai Kessenbrock, Devon A. Lawson, Roman Camarda, Brittany N. Anderton, Alexey V. Bazarov, Henok Eyob, Julia Rohrberg, Paul Yaswen, Michael T. McManus, Hope S. Rugo, Zena Werb, Andrei Goga. PIM kinase as a novel therapeutic target for triple-negative breast cancer. [abstract]. In: Proceedings of the AACR Special Conference on Advances in Breast Cancer Research; Oct 17-20, 2015; Bellevue, WA. Philadelphia (PA): AACR; Mol Cancer Res 2016;14(2_Suppl):Abstract nr B34.
Cancer Research | 2016
Julia Rohrberg; Alexandra Corella; Sanjeev Balakrishnan; Andrei Goga
Triple-negative breast cancer (TNBC) presents the most challenging subtype with the poorest clinical outcome and no targeted therapy. Our lab previously showed that oncogenic MYC pathways are deregulated in human TNBC tumors and predict patients’ poor prognosis. However, clinical development of small molecule inhibitors for MYC has not been successful yet. We identified a synthetic-lethal interaction in which inhibition of cyclin-dependent kinase 1 (CDK1) resulted in the selective killing of MYC overexpressing cancer cells. CDK1 is a mitotic kinase that regulates a large number of substrates and its inhibition causes proliferation arrest in all cells, which may be associated with toxicity. We hypothesize that the MYC-CDK1 synthetic lethality can be attributed to the loss of function of only one or a handful of CDK1 substrates. To identify those substrates, we combined bioinformatics analysis of gene expression data from patient samples and cell based screening approaches. We identified TPX2 depletion to efficiently kill MYC overexpressing cells, while sparing normal cells. Using analog-sensitive CDK1 we confirmed that TPX2 is a direct substrate of CDK1. TPX2 is highly overexpressed in TNBC and predicts patients’ poor prognosis. Its loss of function efficiently kills TNBC cells in a MYC dependent manner. We hypothesize that TPX2 is a novel synthetic lethal interaction partner of MYC. Our studies will help elucidate the biology of MYC-driven cancer such as TNBC, which will eventually lead to the development of less toxic and more efficacious targeted therapies. Citation Format: Julia Rohrberg, Alexandra Corella, Sanjeev Balakrishnan, Andrei Goga. TPX2 overexpression is essential for the survival of MYC-driven triple negative breast cancer. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2822.
Cancer Research | 2016
Roman Camarda; Alicia Y. Zhou; Rebecca A. Kohnz; Sanjeev Balakrishnan; Celine Mahieu; Brittany Anderton; Henok Eyob; Shingo Kajimura; Aaron D. Tward; Gregor Krings; Daniel K. Nomura; Andrei Goga
Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC) compared to estrogen, progesterone and/or human epidermal growth factor 2 receptor-positive (RP) breast tumors. We and others have shown that MYC alters metabolism during tumorigenesis. However, the role of MYC in TNBC metabolism remains largely unexplored. We hypothesized that pharmacologic inhibition of MYC-driven metabolic pathways may serve as a therapeutic strategy for this clinically challenging subtype of breast cancer. Using a targeted metabolomics approach, we identified fatty-acid oxidation (FAO) intermediates as dramatically upregulated in a MYC-driven model of TNBC. A lipid metabolism gene signature was identified in patients with TNBC in the TCGA and multiple other clinical datasets, implicating FAO as a dysregulated pathway critical for TNBC metabolism. We find that MYC-overexpressing TNBC, including a transgenic model and patient-derived xenograft (PDX), display increased bioenergetic reliance upon FAO. Pharmacologic inhibition of FAO catastrophically decreases energy metabolism of MYC-overexpressing breast cancer, blocks growth of a MYC-driven transgenic TNBC model and MYC-overexpressing PDX. Our results demonstrate that inhibition of FAO is a novel therapeutic strategy against TNBCs that overexpress MYC. Citation Format: Roman Camarda, Alicia Y. Zhou, Rebecca A. Kohnz, Sanjeev Balakrishnan, Celine Mahieu, Brittany Anderton, Henok Eyob, Shingo Kajimura, Aaron Tward, Gregor Krings, Daniel K. Nomura, Andrei Goga. Inhibition of fatty-acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2673.