Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanjeev Munshi is active.

Publication


Featured researches published by Sanjeev Munshi.


Structure | 1995

Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy.

Jeffrey A. Speir; Sanjeev Munshi; Guoji Wang; Timothy S. Baker; John E. Johnson

BACKGROUND RNA-protein interactions stabilize many viruses and also the nucleoprotein cores of enveloped animal viruses (e.g. retroviruses). The nucleoprotein particles are frequently pleomorphic and generally unstable due to the lack of strong protein-protein interactions in their capsids. Principles governing their structures are unknown because crystals of such nucleoprotein particles that diffract to high resolution have not previously been produced. Cowpea chlorotic mottle virions (CCMV) are typical of particles stabilized by RNA-protein interactions and it has been found that crystals that diffract beyond 4.5 A resolution are difficult to grow. However, we report here the purification of CCMV with an exceptionally mild procedure and the growth of crystals that diffract X-rays to 3.2 A resolution. RESULTS The 3.2 A X-ray structure of native CCMV, an icosahedral (T = 3) RNA plant virus, shows novel quaternary structure interactions based on interwoven carboxyterminal polypeptides that extend from canonical capsid beta-barrel subunits. Additional particle stability is provided by intercapsomere contacts between metal ion mediated carboxyl cages and by protein interactions with regions of ordered RNA. The structure of a metal-free, swollen form of the virus was determined by cryo-electron microscopy and image reconstruction. Modeling of this structure with the X-ray coordinates of the native subunits shows that the 29 A radial expansion is due to electrostatic repulsion at the carboxyl cages and is stopped short of complete disassembly by preservation of interwoven carboxyl termini and protein-RNA contacts. CONCLUSIONS The CCMV capsid displays quaternary structural interactions that are unique compared with previously determined RNA virus structures. The loosely coupled hexamer and pentamer morphological units readily explain their versatile reassembly properties and the pH and metal ion dependent polymorphism observed in the virions. Association of capsomeres through inter-penetrating carboxy-terminal portions of the subunit polypeptides has been previously described only for the DNA tumor viruses, SV40 and polyoma.


Journal of Virology | 2010

Structural basis for the inhibition of RNase H activity of HIV-1 reverse transcriptase by RNase H active site-directed inhibitors.

Hua-Poo Su; Youwei Yan; G. Sridhar Prasad; Robert F. Smith; Christopher L. Daniels; Pravien Abeywickrema; John C. Reid; H. Marie Loughran; Maria Kornienko; Sujata Sharma; Jay A. Grobler; Bei Xu; Vinod V. Sardana; Timothy J. Allison; Peter D. Williams; Paul L. Darke; Daria J. Hazuda; Sanjeev Munshi

ABSTRACT HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of aminoheterocycles as a novel beta-secretase inhibitor class: pH dependence on binding activity part 1.

Shawn J. Stachel; Craig A. Coburn; Diane Rush; Kristen L.G. Jones; Hong Zhu; Hemaka A. Rajapakse; Samuel L. Graham; Adam J. Simon; M. Katharine Holloway; Tim J. Allison; Sanjeev Munshi; Amy S. Espeseth; Paul Zuck; Dennis Colussi; Abigail Wolfe; Beth Pietrak; Ming-Tain Lai; Joseph P. Vacca

We have developed a novel series of heteroaromatic BACE-1 inhibitors. These inhibitors interact with the enzyme in a unique fashion that allows for potent binding in a non-traditional paradigm. In addition to the elucidation of their binding profile, we have discovered a pH dependent effect on the binding affinity as a result of the intrinsic pK(a) of these inhibitors and the pH of the BACE-1 enzyme binding assay.


Journal of Medicinal Chemistry | 2008

Discovery and X-ray Crystallographic Analysis of a Spiropiperidine Iminohydantoin Inhibitor of β-Secretase‡

James C. Barrow; Shaun R. Stauffer; Kenneth E. Rittle; Phung L. Ngo; Zhi-Qiang Yang; Harold G. Selnick; Samuel L. Graham; Sanjeev Munshi; Georgia B. McGaughey; M. Katharine Holloway; Adam J. Simon; Eric A. Price; Sethu Sankaranarayanan; Dennis Colussi; Katherine Tugusheva; Ming Tain Lai; Amy S. Espeseth; Min Xu; Qian Huang; Abigail Wolfe; Beth Pietrak; Paul Zuck; Dorothy Levorse; Daria J. Hazuda; Joseph P. Vacca

A high-throughput screen at 100 microM inhibitor concentration for the BACE-1 enzyme revealed a novel spiropiperidine iminohydantoin aspartyl protease inhibitor template. An X-ray cocrystal structure with BACE-1 revealed a novel mode of binding whereby the inhibitor interacts with the catalytic aspartates via bridging water molecules. Using the crystal structure as a guide, potent compounds with good brain penetration were designed.


Journal of Biological Chemistry | 2011

Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells CHARACTERIZATION OF A SELECTIVE ALLOSTERIC KINASE INHIBITOR

Kumiko Nagashima; Stuart D. Shumway; Sriram Sathyanarayanan; Albert H. Chen; Brian M. Dolinski; Youyuan Xu; Heike Keilhack; Thi Lien-Anh Nguyen; Maciej Wiznerowicz; Lixia Li; Bart Lutterbach; An Chi; Cloud P. Paweletz; Timothy M. Allison; Youwei Yan; Sanjeev Munshi; Anke Klippel; Manfred Kraus; Ekaterina V. Bobkova; Sujal V. Deshmukh; Zangwei Xu; Uwe Mueller; Alexander A. Szewczak; Bo-Sheng Pan; Victoria M. Richon; Roy M. Pollock; Peter Blume-Jensen; Alan B. Northrup; Jannik N. Andersen

Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1–5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.


Bioorganic & Medicinal Chemistry Letters | 2009

Development of thioquinazolinones, allosteric Chk1 kinase inhibitors.

Antonella Converso; Timothy J. Hartingh; Robert M. Garbaccio; Edward Tasber; Keith Rickert; Mark E. Fraley; Youwei Yan; Constantine Kreatsoulas; Steve Stirdivant; Bob Drakas; Eileen S. Walsh; Kelly Hamilton; Carolyn A. Buser; Xianzhi Mao; Marc T. Abrams; Stephen C. Beck; Weikang Tao; Rob Lobell; Laura Sepp-Lorenzino; Joan Zugay-Murphy; Vinod V. Sardana; Sanjeev Munshi; Sylvie Jezequel-Sur; Paul Zuck; George D. Hartman

A high throughput screening campaign was designed to identify allosteric inhibitors of Chk1 kinase by testing compounds at high concentration. Activity was then observed at K(m) for ATP and at near-physiological concentrations of ATP. This strategy led to the discovery of a non-ATP competitive thioquinazolinone series which was optimized for potency and stability. An X-ray crystal structure for the complex of our best inhibitor bound to Chk1 was solved, indicating that it binds to an allosteric site approximately 13A from the ATP binding site. Preliminary data is presented for several of these compounds.


Acta Crystallographica Section D-biological Crystallography | 2003

Structure of apo, unactivated insulin-like growth factor-1 receptor kinase at 1.5 A resolution.

Sanjeev Munshi; Dawn L. Hall; Maria Kornienko; Paul L. Darke; Lawrence C. Kuo

The crystal structure of the wild-type unactivated kinase domain (IGFRK-0P) of insulin-like growth factor-1 receptor has been reported previously at 2.7 A resolution [Munshi et al. (2002), J. Biol. Chem. 277, 38797-38802]. In order to obtain a high-resolution structure, a number of variants of IGFRK-0P were prepared and screened for crystallization. A double mutant with E1067A and E1069A substitutions within the kinase-insert region resulted in crystals that diffracted to 1.5 A resolution. Overall, the structure of the mutant IGFRK-0P is similar to that of the wild-type IGFRK-0P structure, with the exception of the previously disordered kinase-insert region in the wild type having become fixed. In addition, amino-acid residues 947-952 at the N-terminus are well defined in the mutant structure. The monomeric protein structure is folded into two lobes connected by a hinge region, with the catalytic center situated at the interface of the two lobes. Two molecules of IGFRK-0P in the asymmetric unit are associated as a dimer and two different types of dimers with their ATP-binding clefts either facing towards or away from each other are observed. The current refined model consists of a dimer and 635 water molecules.


Journal of Biological Chemistry | 2010

Structural basis of human p70 ribosomal S6 kinase-1 regulation by activation loop phosphorylation.

Tomoko Sunami; Noel Byrne; Ronald E. Diehl; Kaoru Funabashi; Dawn L. Hall; Mari Ikuta; Sangita B. Patel; Jennifer M. Shipman; Robert F. Smith; Ikuko Takahashi; Joan Zugay-Murphy; Yoshikazu Iwasawa; Kevin J. Lumb; Sanjeev Munshi; Sujata Sharma

p70 ribosomal S6 kinase (p70S6K) is a downstream effector of the mTOR signaling pathway involved in cell proliferation, cell growth, cell-cycle progression, and glucose homeostasis. Multiple phosphorylation events within the catalytic, autoinhibitory, and hydrophobic motif domains contribute to the regulation of p70S6K. We report the crystal structures of the kinase domain of p70S6K1 bound to staurosporine in both the unphosphorylated state and in the 3′-phosphoinositide-dependent kinase-1-phosphorylated state in which Thr-252 of the activation loop is phosphorylated. Unphosphorylated p70S6K1 exists in two crystal forms, one in which the p70S6K1 kinase domain exists as a monomer and the other as a domain-swapped dimer. The crystal structure of the partially activated kinase domain that is phosphorylated within the activation loop reveals conformational ordering of the activation loop that is consistent with a role in activation. The structures offer insights into the structural basis of the 3′-phosphoinositide-dependent kinase-1-induced activation of p70S6K and provide a platform for the rational structure-guided design of specific p70S6K inhibitors.


Biochemistry | 2009

Fragment-based discovery of nonpeptidic BACE-1 inhibitors using tethering.

Wenjin Yang; Raymond V. Fucini; Bruce T. Fahr; Mike Randal; Kenneth E. Lind; Melissa B. Lam; Wanli Lu; Yafan Lu; Douglas R. Cary; Michael J. Romanowski; Dennis Colussi; Beth Pietrak; Timothy J. Allison; Sanjeev Munshi; David M. Penny; Phuongly Pham; Jian Sun; Anila E. Thomas; Jennifer Wilkinson; Jeffrey W. Jacobs; Robert Mcdowell; Marcus Ballinger

BACE-1 (beta-site amyloid precursor protein cleaving enzyme), a prominent target in Alzheimers disease drug discovery efforts, was surveyed using Tethering technology to discover small molecule fragment ligands that bind to the enzyme active site. Screens of a library of >15000 thiol-containing fragments versus a panel of BACE-1 active site cysteine mutants under redox-controlled conditions revealed several novel amine-containing fragments that could be selectively captured by subsets of the tethering sites. For one such hit class, defined by a central aminobenzylpiperidine (ABP) moiety, X-ray crystal structures of BACE mutant-disulfide conjugates revealed that the fragment bound by engaging both catalytic aspartates with hydrogen bonds. The affinities of ABP fragments were improved by structure-guided chemistry, first for conjugation as thiol-containing fragments and then for stand-alone, noncovalent inhibition of wild-type (WT) BACE-1 activity. Crystallography confirmed that the inhibitors bound in exactly the same mode as the disulfide-conjugated fragments that were originally selected from the screen. The ABP ligands represent a new type of nonpeptidic BACE-1 inhibitor motif that has not been described in the aspartyl protease literature and may serve as a starting point for the development of BACE-1-directed Alzheimers disease therapeutics.


Antimicrobial Agents and Chemotherapy | 2010

Distinct Mutation Pathways of Non-Subtype B HIV-1 during In Vitro Resistance Selection with Nonnucleoside Reverse Transcriptase Inhibitors

Ming-Tain Lai; Meiqing Lu; Peter J. Felock; Renee Hrin; Ying-Jie Wang; Youwei Yan; Sanjeev Munshi; Georgia B Mcgaughey; Robert M. Tynebor; Thomas J. Tucker; Theresa M. Williams; Jay A. Grobler; Daria J. Hazuda; Philip M. McKenna; Michael D. Miller

ABSTRACT Studies were conducted to investigate mutation pathways among subtypes A, B, and C of human immunodeficiency virus type 1 (HIV-1) during resistance selection with nonnucleoside reverse transcriptase inhibitors (NNRTIs) in cell culture under low-multiplicity of infection (MOI) conditions. The results showed that distinct pathways were selected by different virus subtypes under increasing selective pressure of NNRTIs. F227C and Y181C were the major mutations selected by MK-4965 in subtype A and C viruses during resistance selection. With efavirenz (EFV), F227C and V106M were the major mutations responsible for viral breakthrough in subtype A viruses, whereas a single pathway (G190A/V106M) accounted for mutation development in subtype C viruses. Y181C was the dominant mutation in the resistance selection with etravirine (ETV) in subtype A, and E138K/H221Y were the mutations detected in the breakthrough viruses from subtype C viruses with ETV. In subtype B viruses, on the other hand, known NNRTI-associated mutations (e.g., Y181C, P236L, L100I, V179D, and K103N) were selected by the NNRTIs. The susceptibility of the subtype A and B mutant viruses to NNRTIs was determined in order to gain insight into the potential mechanisms of mutation development. Collectively, these results suggest that minor differences may exist in conformation of the residues within the NNRTI binding pocket (NNRTIBP) of reverse transcriptase (RT) among the three subtypes of viruses. Thus, the interactions between NNRTIs and the residues in the NNRTIBPs of different subtypes may not be identical, leading to distinct mutation pathways during resistance selection in cell culture.

Collaboration


Dive into the Sanjeev Munshi's collaboration.

Top Co-Authors

Avatar

Joseph P. Vacca

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Youwei Yan

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Samuel L. Graham

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Adam J. Simon

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Dennis Colussi

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Georgia B. McGaughey

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Ming-Tain Lai

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

John E. Johnson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lawrence C. Kuo

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge