Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sankararaman Suryanarayanan is active.

Publication


Featured researches published by Sankararaman Suryanarayanan.


Medical Physics | 2000

Full breast digital mammography with an amorphous silicon‐based flat panel detector: Physical characteristics of a clinical prototype

Srinivasan Vedantham; Andrew Karellas; Sankararaman Suryanarayanan; Douglas Albagli; Sung Han; Eric J. Tkaczyk; Cynthia Elizabeth Landberg; Beale Opsahl-Ong; Paul R. Granfors; Ilias Levis; Carl J. D'Orsi; R. Edward Hendrick

The physical characteristics of a clinical prototype amorphous silicon-based flat panel imager for full-breast digital mammography have been investigated. The imager employs a thin thallium doped CsI scintillator on an amorphous silicon matrix of detector elements with a pixel pitch of 100 microm. Objective criteria such as modulation transfer function (MTF), noise power spectrum, detective quantum efficiency (DQE), and noise equivalent quanta were employed for this evaluation. The presampling MTF was found to be 0.73, 0.42, and 0.28 at 2, 4, and 5 cycles/mm, respectively. The measured DQE of the current prototype utilizing a 28 kVp, Mo-Mo spectrum beam hardened with 4.5 cm Lucite is approximately 55% at close to zero spatial frequency at an exposure of 32.8 mR, and decreases to approximately 40% at a low exposure of 1.3 mR. Detector element nonuniformity and electronic gain variations were not significant after appropriate calibration and software corrections. The response of the imager was linear and did not exhibit signal saturation under tested exposure conditions.


Academic Radiology | 2000

Comparison of tomosynthesis methods used with digital mammography

Sankararaman Suryanarayanan; Andrew Karellas; Srinivasan Vedantham; Stephen J. Glick; Carl J. D'Orsi; Stephen P. Baker; Richard L. Webber

RATIONALE AND OBJECTIVES The authors performed this study to investigate the potential applicability of tomosynthesis to digital mammography. Four methods of tomosynthesis-tuned aperture computed tomography (TACT)-backprojection, TACT-iterative restoration, iterative reconstruction with expectation maximization, and Bayesian smoothing-were compared to planar mammography and analyzed in terms of their contrast-detail characteristics. Specific comparisons between the tomosynthesis methods were not attempted in this study. MATERIALS AND METHODS A full-field, amorphous, silicon-based, flat-panel digital mammographic system was used to obtain planar and tomosynthesis projection images. A composite tomosynthesis phantom with a centrally located contrast-detail insert was used as the object of interest. The total exposure for multiple views with tomosynthesis was always equal to or less than that for the planar technique. Algorithms were used to reconstruct the object from the acquired projections. RESULTS Threshold contrast characteristics with all tomosynthesis reconstruction methods were significantly better than those with planar mammography, even when planar mammography was performed at more than twice the exposure level. Reduction of out-of-plane structural components was observed in all the tomosynthesis methods analyzed. CONCLUSION The contrast-detail trends of all the tomosynthesis methods analyzed in this study were better than those of planar mammography. Further optimization of the algorithms could lead to better image reconstruction, which would improve visualization of valuable diagnostic information.


Medical Physics | 2006

Computation of the glandular radiation dose in digital tomosynthesis of the breast

Ioannis Sechopoulos; Sankararaman Suryanarayanan; Srinivasan Vedantham; Carl J. D'Orsi; Andrew Karellas

Tomosynthesis of the breast is currently a topic of intense interest as a logical next step in the evolution of digital mammography. This study reports on the computation of glandular radiation dose in digital tomosynthesis of the breast. Previously, glandular dose estimations in tomosynthesis have been performed using data from studies of radiation dose in conventional planar mammography. This study evaluates, using Monte Carlo methods, the normalized glandular dose (DgN) to the breast during a tomosynthesis study, and characterizes its dependence on breast size, tissue composition, and x-ray spectrum. The conditions during digital tomosynthesis imaging of the breast were simulated using a computer program based on the Geant4 toolkit. With the use of simulated breasts of varying size, thickness and tissue composition, the DgN to the breast tissue was computed for varying x-ray spectra and tomosynthesis projection angle. Tomosynthesis projections centered about both the cranio-caudal (CC) and medio-lateral oblique (MLO) views were simulated. For each projection angle, the ratio of the glandular dose for that projection to the glandular dose for the zero degree projection was computed. This ratio was denoted the relative glandular dose (RGD) coefficient, and its variation under different imaging parameters was analyzed. Within mammographic energies, the RGD was found to have a weak dependence on glandular fraction and x-ray spectrum for both views. A substantial dependence on breast size and thickness was found for the MLO view, and to a lesser extent for the CC view. Although RGD values deviate substantially from unity as a function of projection angle, the RGD averaged over all projections in a complete tomosynthesis study varies from 0.91 to 1.01. The RGD results were fit to mathematical functions and the resulting equations are provided.


Radiology | 2009

Imaging Nanoprobe for Prediction of Outcome of Nanoparticle Chemotherapy by Using Mammography

Efstathios Karathanasis; Sankararaman Suryanarayanan; Sri R. Balusu; Kathleen M. McNeeley; Ioannis Sechopoulos; Andrew Karellas; Ananth Annapragada; Ravi V. Bellamkonda

PURPOSE To prospectively predict the effectiveness of a clinically used nanochemotherapeutic agent by detecting and measuring the intratumoral uptake of an x-ray contrast agent nanoprobe by using digital mammography. MATERIALS AND METHODS All animal procedures were approved by the institutional animal care and use committee. A long-circulating 100-nm-scale injectable liposomal probe encapsulating 155 mg/mL iodine was developed. Preliminary studies were performed to identify the agent dose that would result in adequate tumor enhancement without enhancement of the normal vasculature in rats. This dose was used to image a rat breast tumor (n = 14) intermittently for 3 days by using a digital mammography system; subsequently, the animals were treated with liposomal doxorubicin. The predictive capability of the probe was characterized by creating good- and bad-prognosis subgroups, on the basis of tumor enhancement found during imaging, and analyzing the tumor growth after treatment of the animals in these two subgroups. RESULTS A dose of 455 mg of iodine per kilogram of body weight was found to produce an undetectable signal from the blood while achieving enough intratumoral accumulation of the probe to produce adequate signal for detection. The good- and bad-prognosis subgroups demonstrated differential tumor growth rates (P < .003). An inverse linear relationship between the contrast enhancement rate constant during imaging and the tumor growth rate constant during treatment was found (slope = -0.576, R(2) = 0.838). CONCLUSION In this animal model, quantitative measurement of vascular permeability enabled prediction of therapeutic responsiveness of tumors to liposomal doxorubicin.


Medical Physics | 2007

Scatter radiation in digital tomosynthesis of the breast

Ioannis Sechopoulos; Sankararaman Suryanarayanan; Srinivasan Vedantham; Carl J. D'Orsi; Andrew Karellas

Digital tomosynthesis of the breast is being investigated as one possible solution to the problem of tissue superposition present in planar mammography. This imaging technique presents various advantages that would make it a feasible replacement for planar mammography, among them similar, if not lower, radiation glandular dose to the breast; implementation on conventional digital mammography technology via relatively simple modifications; and fast acquisition time. One significant problem that tomosynthesis of the breast must overcome, however, is the reduction of x-ray scatter inclusion in the projection images. In tomosynthesis, due to the projection geometry and radiation dose considerations, the use of an antiscatter grid presents several challenges. Therefore, the use of postacquisition software-based scatter reduction algorithms seems well justified, requiring a comprehensive evaluation of x-ray scatter content in the tomosynthesis projections. This study aims to gain insight into the behavior of x-ray scatter in tomosynthesis by characterizing the scatter point spread functions (PSFs) and the scatter to primary ratio (SPR) maps found in tomosynthesis of the breast. This characterization was performed using Monte Carlo simulations, based on the Geant4 toolkit, that simulate the conditions present in a digital tomosynthesis system, including the simulation of the compressed breast in both the cranio-caudal (CC) and the medio-lateral oblique (MLO) views. The variation of the scatter PSF with varying tomosynthesis projection angle, as well as the effects of varying breast glandular fraction and x-ray spectrum, was analyzed. The behavior of the SPR for different projection angle, breast size, thickness, glandular fraction, and x-ray spectrum was also analyzed, and computer fit equations for the magnitude of the SPR at the center of mass for both the CC and the MLO views were found. Within mammographic energies, the x-ray spectrum was found to have no appreciable effect on the scatter PSF and on the SPR. Glandular fraction and compressed breast size were found to have a small effect, while compressed breast thickness and projection angle, as expected, introduced large variations in both the scatter PSF and SPR. The presence of the breast support plate and the detector cover plate in the simulations introduced important effects on the SPR, which are also relevant to the scatter content in planar mammography.


Medical Physics | 2000

Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system.

Srinivasan Vedantham; Andrew Karellas; Sankararaman Suryanarayanan; Ilias Levis; Michel Sayag; Robert Kleehammer; Robert Heidsieck; Carl J. D'Orsi

The physical characteristics of a clinical charge coupled device (CCD)-based imager (Senovision, GE Medical Systems, Milwaukee, WI) for small-field digital mammography have been investigated. The imager employs a MinR 2000 (Eastman Kodak Company, Rochester, NY) scintillator coupled by a 1:1 optical fiber to a front-illuminated 61 x 61 mm CCD operating at a pixel pitch of 30 microns. Objective criteria such as modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), and noise equivalent quanta (NEQ) were employed for this evaluation. The results demonstrated a limiting spatial resolution (10% MTF) of 10 cy/mm. The measured DQE of the current prototype utilizing a 28 kVp, Mo-Mo spectrum beam hardened with 4.5 cm Lucite is approximately 40% at close to zero spatial frequency at an exposure of 8.2 mR, and decreases to approximately 28% at a low exposure of 1.1 mR. Detector element nonuniformity and electronic gain variations were not significant after appropriate calibration and software corrections. The response of the imager was linear and did not exhibit signal saturation under tested exposure conditions.


Medical Physics | 2004

Solid-state fluoroscopic imager for high-resolution angiography: parallel-cascaded linear systems analysis.

Srinivasan Vedantham; Andrew Karellas; Sankararaman Suryanarayanan

Cascaded linear systems based modeling techniques have been used in the past to predict important system parameters that have a direct impact on image quality. Such models are also useful in optimizing system parameters to improve image quality. In this work, detailed analysis of a solid-state fluoroscopic imaging system intended for high-resolution angiography is presented with the use of such a model. The imaging system analyzed through this model uses four 8 x 8 cm three-side buttable interlined charge-coupled devices (CCDs) specifically designed for high-resolution angiography and tiled in a seamless fashion to achieve a field of view (FOV) of 16 x 16 cm. Larger FOVs can be achieved by tiling more CCDs in a similar manner. The system employs a CsI:Tl scintillator coupled to the CCDs by straight (nontapering) fiberoptics and can potentially be operated in 78, 156, or 234 microm pixel pitch modes. The system parameters analyzed through this model include presampling modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE). The results of the simulations performed indicate that DQE(0) in excess of 0.6 is achievable, with the imager operating at 156 microm pixel pitch, 30 frames/s, and employing a 450-microm-thick CsI:Tl scintillator, even at a low fluoroscopic exposure rate of 1 microR/frame. Further, at a nominal fluoroscopic exposure rate of 2.5 microR/frame there was no noticeable degradation of the DQE even at the 78 microm pixel pitch mode suggesting that it is feasible to perform high-resolution angiography hitherto unattainable in clinical practice.


Medical Physics | 2010

Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: Application for mammography

K. Bliznakova; Sankararaman Suryanarayanan; Andrew Karellas; N. Pallikarakis

PURPOSE This work presents an improved algorithm for the generation of 3D breast software phantoms and its evaluation for mammography. METHODS The improved methodology has evolved from a previously presented 3D noncompressed breast modeling method used for the creation of breast models of different size, shape, and composition. The breast phantom is composed of breast surface, duct system and terminal ductal lobular units, Coopers ligaments, lymphatic and blood vessel systems, pectoral muscle, skin, 3D mammographic background texture, and breast abnormalities. The key improvement is the development of a new algorithm for 3D mammographic texture generation. Simulated images of the enhanced 3D breast model without lesions were produced by simulating mammographic image acquisition and were evaluated subjectively and quantitatively. For evaluation purposes, a database with regions of interest taken from simulated and real mammograms was created. Four experienced radiologists participated in a visual subjective evaluation trial, as they judged the quality of the simulated mammograms, using the new algorithm compared to mammograms, obtained with the old modeling approach. In addition, extensive quantitative evaluation included power spectral analysis and calculation of fractal dimension, skewness, and kurtosis of simulated and real mammograms from the database. RESULTS The results from the subjective evaluation strongly suggest that the new methodology for mammographic breast texture creates improved breast models compared to the old approach. Calculated parameters on simulated images such as beta exponent deducted from the power law spectral analysis and fractal dimension are similar to those calculated on real mammograms. The results for the kurtosis and skewness are also in good coincidence with those calculated from clinical images. Comparison with similar calculations published in the literature showed good agreement in the majority of cases. CONCLUSIONS The improved methodology generated breast models with increased realism compared to the older model as shown in evaluations of simulated images by experienced radiologists. It is anticipated that the realism will be further improved using an advanced image simulator so that simulated images may be used in feasibility studies in mammography.


Radiology | 2008

Monte Carlo and Phantom Study of the Radiation Dose to the Body from Dedicated CT of the Breast

Ioannis Sechopoulos; Srinivasan Vedantham; Sankararaman Suryanarayanan; Carl J. D'Orsi; Andrew Karellas

PURPOSE To prospectively determine the radiation dose absorbed by the organs and tissues of the body during a dedicated breast computed tomography (CT) study by using Monte Carlo methods and a phantom. MATERIALS AND METHODS By using the Geant4 Monte Carlo tool kit, the Cristy anthropomorphic phantom and the geometry of a dedicated breast CT prototype were simulated. The simulation was used to track x-rays emitted from the source until their complete absorption or exit from the simulation limits. The interactions of the x-rays with the 65 different volumes representing organs, bones, and other tissues of the phantom that resulted in energy deposition were recorded. These data were used to compute the radiation dose to the organs and tissues during a complete dedicated breast CT scan relative to the average glandular dose to the imaged breast (relative organ dose [ROD]), by using the x-ray spectra proposed for dedicated breast CT imaging. The effectiveness of a lead shield for reducing the dose to the organs was investigated. RESULTS The maximum ROD among the organs was for the ipsilateral lung with a maximum ROD of 3.25%, followed by ROD for the heart and the thymus. Of the skeletal tissues, the sternum received the highest dose with a maximum ROD to the bone marrow of 2.24% and to the bone surface of 7.74%. The maximum ROD to the uterus, representative of that of an early-stage fetus, was 0.026%. These maxima occurred for the highest-energy x-ray spectrum (80 kVp) that was analyzed. A lead shield does not substantially protect the organs that receive the highest dose from dedicated breast CT. CONCLUSION Although the dose to the organs from dedicated breast CT is substantially higher than that from planar mammography, it is comparable to or considerably lower than that reached by other radiographic procedures and much lower than that of other CT examinations.


IEEE Transactions on Instrumentation and Measurement | 1998

Sensitometric response of Cd/sub 1-x/Zn/sub x/Te detectors for chest radiography

George C. Giakos; Amlan Dasgupta; Sankararaman Suryanarayanan; Samir Chowdhury; R. Guntupalli; Srinivasan Vedantham; Bindu Pillai; Anthony M. Passalaqua; Shashidhar Kollipara

The sensitometric response of Cd/sub 1-x/Zn/sub x/Te semiconductor detectors using a geometrical chest phantom, within the X-ray diagnostic energy range, has been studied with the aim of optimizing the image quality parameters of these solid state-ionization devices. In addition, the dependence of the spatial resolution of a planar Cd/sub 1-x/Zn/sub x/Te substrate on the phantom thickness has been experimentally determined. The results of this study indicate that Cd/sub 1-x/Zn/sub x/Te detectors exhibit a high signal-to-noise ratio (S/N).

Collaboration


Dive into the Sankararaman Suryanarayanan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Karellas

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge