Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sankari Nagarajan is active.

Publication


Featured researches published by Sankari Nagarajan.


Cell Reports | 2014

Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation and gene transcription.

Sankari Nagarajan; Tareq Hossan; Malik Alawi; Zeynab Najafova; Daniela Indenbirken; Upasana Bedi; Hanna Taipaleenmäki; Isabel Ben-Batalla; Marina Scheller; Sonja Loges; Stefan Knapp; Eric Hesse; Cheng Ming Chiang; Adam Grundhoff; Steven A. Johnsen

SUMMARY The estrogen receptor α (ERα) controls cell proliferation and tumorigenesis by recruiting various cofactors to estrogen response elements (EREs) to control gene transcription. A deeper understanding of these transcriptional mechanisms may uncover therapeutic targets for ERα-dependent cancers. We show that BRD4 regulates ERα-induced gene expression by affecting elongation-associated phosphorylation of RNA polymerase II (RNAPII) and histone H2B monoubiquitination. Consistently, BRD4 activity is required for proliferation of ER+ breast and endometrial cancer cells and uterine growth in mice. Genome-wide studies revealed an enrichment of BRD4 on transcriptional start sites of active genes and a requirement of BRD4 for H2B monoubiquitination in the transcribed region of estrogen-responsive genes. Importantly, we demonstrate that BRD4 occupancy on distal EREs enriched for H3K27ac is required for recruitment and elongation of RNAPII on EREs and the production of ERα-dependent enhancer RNAs. These results uncover BRD4 as a central regulator of ERα function and potential therapeutic target.


Journal of Clinical Investigation | 2015

HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models

Eva Benito; Hendrik Urbanke; Jonas Barth; Rashi Halder; Ankit Awasthi; Gaurav Jain; Vincenzo Capece; Susanne Burkhardt; Magdalena Navarro-Sala; Sankari Nagarajan; Anna-Lena Schütz; Steven A. Johnsen; Stefan Bonn; Reinhardt Lührmann; Camin Dean; Andre Fischer

Aging and increased amyloid burden are major risk factors for cognitive diseases such as Alzheimers disease (AD). Effective therapies for these diseases are lacking. Here, we evaluated mouse models of age-associated memory impairment and amyloid deposition to study transcriptome and cell type-specific epigenome plasticity in the brain and peripheral organs. We determined that aging and amyloid pathology are associated with inflammation and impaired synaptic function in the hippocampal CA1 region as the result of epigenetic-dependent alterations in gene expression. In both amyloid and aging models, inflammation was associated with increased gene expression linked to a subset of transcription factors, while plasticity gene deregulation was differentially mediated. Amyloid pathology impaired histone acetylation and decreased expression of plasticity genes, while aging altered H4K12 acetylation-linked differential splicing at the intron-exon junction in neurons, but not nonneuronal cells. Furthermore, oral administration of the clinically approved histone deacetylase inhibitor vorinostat not only restored spatial memory, but also exerted antiinflammatory action and reinstated epigenetic balance and transcriptional homeostasis at the level of gene expression and exon usage. This study provides a systems-level investigation of transcriptome plasticity in the hippocampal CA1 region in aging and AD models and suggests that histone deacetylase inhibitors should be further explored as a cost-effective therapeutic strategy against age-associated cognitive decline.


Epigenetics & Chromatin | 2012

Cohesin is required for expression of the estrogen receptor-alpha (ESR1) gene

Tanja Prenzel; Frank Kramer; Upasana Bedi; Sankari Nagarajan; Tim Beissbarth; Steven A. Johnsen

BackgroundIn conjunction with posttranslational chromatin modifications, proper arrangement of higher order chromatin structure appears to be important for controlling transcription in the nucleus. Recent genome-wide studies have shown that the Estrogen Receptor-alpha (ERα), encoded by the ESR1 gene, nucleates tissue-specific long-range chromosomal interactions in collaboration with the cohesin complex. Furthermore, the Mediator complex not only regulates ERα activity, but also interacts with the cohesin complex to facilitate long-range chromosomal interactions. However, whether the cohesin and Mediator complexes function together to contribute to estrogen-regulated gene transcription remains unknown.ResultsIn this study we show that depletion of the cohesin subunit SMC3 or the Mediator subunit MED12 significantly impairs the ERα-regulated transcriptome. Surprisingly, SMC3 depletion appears to elicit this effect indirectly by rapidly decreasing ESR1 transcription and ERα protein levels. Moreover, we provide evidence that both SMC3 and MED12 colocalize on the ESR1 gene and are mutually required for their own occupancy as well as for RNAPII occupancy across the ESR1 gene. Finally, we show that extended proteasome inhibition decreases the mRNA expression of cohesin subunits which accompanies a decrease in ESR1 mRNA and ERα protein levels as well as estrogen-regulated transcription.ConclusionsThese results identify the ESR1 gene as a cohesin/Mediator-dependent gene and indicate that this regulation may potentially be exploited for the treatment of estrogen-dependent breast cancer.


Nucleic Acids Research | 2017

BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire

Zeynab Najafova; Roberto Tirado-Magallanes; Malayannan Subramaniam; Tareq Hossan; Geske Schmidt; Sankari Nagarajan; Simon J. Baumgart; Vivek Kumar Mishra; Upasana Bedi; Eric Hesse; Stefan Knapp; John R. Hawse; Steven A. Johnsen

Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4) was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is recruited to the transcriptional start site of differentiation-induced genes. Unexpectedly, while promoter-proximal BRD4 occupancy correlated with gene expression, genes which displayed moderate expression and promoter-proximal BRD4 occupancy were most highly regulated and sensitive to BRD4 inhibition. Therefore, we examined distal BRD4 occupancy and uncovered a specific co-localization of BRD4 with the transcription factors C/EBPb, TEAD1, FOSL2 and JUND at putative osteoblast-specific enhancers. These findings reveal the intricacies of lineage specification and provide new insight into the context-dependent functions of BRD4.


Genome Biology | 2017

RNF40 regulates gene expression in an epigenetic context-dependent manner

Wanhua Xie; Sankari Nagarajan; Simon J. Baumgart; Robyn Laura Kosinsky; Zeynab Najafova; Vijayalakshmi Kari; Magali Hennion; Daniela Indenbirken; Stefan Bonn; Adam Grundhoff; Florian Wegwitz; Ahmed Mansouri; Steven A. Johnsen

BackgroundMonoubiquitination of H2B (H2Bub1) is a largely enigmatic histone modification that has been linked to transcriptional elongation. Because of this association, it has been commonly assumed that H2Bub1 is an exclusively positively acting histone modification and that increased H2Bub1 occupancy correlates with increased gene expression. In contrast, depletion of the H2B ubiquitin ligases RNF20 or RNF40 alters the expression of only a subset of genes.ResultsUsing conditional Rnf40 knockout mouse embryo fibroblasts, we show that genes occupied by low to moderate amounts of H2Bub1 are selectively regulated in response to Rnf40 deletion, whereas genes marked by high levels of H2Bub1 are mostly unaffected by Rnf40 loss. Furthermore, we find that decreased expression of RNF40-dependent genes is highly associated with widespread narrowing of H3K4me3 peaks. H2Bub1 promotes the broadening of H3K4me3 to increase transcriptional elongation, which together lead to increased tissue-specific gene transcription. Notably, genes upregulated following Rnf40 deletion, including Foxl2, are enriched for H3K27me3, which is decreased following Rnf40 deletion due to decreased expression of the Ezh2 gene. As a consequence, increased expression of some RNF40-“suppressed” genes is associated with enhancer activation via FOXL2.ConclusionTogether these findings reveal the complexity and context-dependency whereby one histone modification can have divergent effects on gene transcription. Furthermore, we show that these effects are dependent upon the activity of other epigenetic regulatory proteins and histone modifications.


Cancer Research | 2017

Krüppel-like Transcription Factor KLF10 Suppresses TGFβ-Induced Epithelial-to-Mesenchymal Transition via a Negative Feedback Mechanism

Vivek Kumar Mishra; Malayannan Subramaniam; Vijayalakshmi Kari; Kevin S. Pitel; Simon J. Baumgart; Ryan M. Naylor; Sankari Nagarajan; Florian Wegwitz; V Ellenrieder; John R. Hawse; Steven A. Johnsen

TGFβ-SMAD signaling exerts a contextual effect that suppresses malignant growth early in epithelial tumorigenesis but promotes metastasis at later stages. Longstanding challenges in resolving this functional dichotomy may uncover new strategies to treat advanced carcinomas. The Krüppel-like transcription factor, KLF10, is a pivotal effector of TGFβ/SMAD signaling that mediates antiproliferative effects of TGFβ. In this study, we show how KLF10 opposes the prometastatic effects of TGFβ by limiting its ability to induce epithelial-to-mesenchymal transition (EMT). KLF10 depletion accentuated induction of EMT as assessed by multiple metrics. KLF10 occupied GC-rich sequences in the promoter region of the EMT-promoting transcription factor SLUG/SNAI2, repressing its transcription by recruiting HDAC1 and licensing the removal of activating histone acetylation marks. In clinical specimens of lung adenocarcinoma, low KLF10 expression associated with decreased patient survival, consistent with a pivotal role for KLF10 in distinguishing the antiproliferative versus prometastatic functions of TGFβ. Our results establish that KLF10 functions to suppress TGFβ-induced EMT, establishing a molecular basis for the dichotomy of TGFβ function during tumor progression. Cancer Res; 77(9); 2387-400. ©2017 AACR.


Stem Cells | 2016

Histone Chaperone SSRP1 is Essential for Wnt Signaling Pathway Activity During Osteoblast Differentiation

Tareq Hossan; Sankari Nagarajan; Simon J. Baumgart; Wanhua Xie; Roberto Tirado Magallanes; Céline Hernandez; Pierre-Marie Chiaroni; Daniela Indenbirken; Melanie Spitzner; Morgane Thomas-Chollier; Marian Grade; Denis Thieffry; Adam Grundhoff; Florian Wegwitz; Steven A. Johnsen

Cellular differentiation is accompanied by dramatic changes in chromatin structure which direct the activation of lineage‐specific transcriptional programs. Structure‐specific recognition protein‐1 (SSRP1) is a histone chaperone which is important for chromatin‐associated processes such as transcription, DNA replication and repair. Since the function of SSRP1 during cell differentiation remains unclear, we investigated its potential role in controlling lineage determination. Depletion of SSRP1 in human mesenchymal stem cells elicited lineage‐specific effects by increasing expression of adipocyte‐specific genes and decreasing the expression of osteoblast‐specific genes. Consistent with a role in controlling lineage specification, transcriptome‐wide RNA‐sequencing following SSRP1 depletion and the induction of osteoblast differentiation revealed a specific decrease in the expression of genes involved in biological processes related to osteoblast differentiation. Importantly, we observed a specific downregulation of target genes of the canonical Wnt signaling pathway, which was accompanied by decreased nuclear localization of active β‐catenin. Together our data uncover a previously unknown role for SSRP1 in promoting the activation of the Wnt signaling pathway activity during cellular differentiation. Stem Cells 2016;34:1369–1376


Nucleic Acids Research | 2016

BRD4 promotes p63 and GRHL3 expression downstream of FOXO in mammary epithelial cells.

Sankari Nagarajan; Upasana Bedi; Anusha Budida; Feda H. Hamdan; Vivek Kumar Mishra; Zeynab Najafova; Wanhua Xie; Malik Alawi; Daniela Indenbirken; Stefan Knapp; Cheng Ming Chiang; Adam Grundhoff; Vijayalakshmi Kari; Christina H. Scheel; Florian Wegwitz; Steven A. Johnsen

Abstract Bromodomain-containing protein 4 (BRD4) is a member of the bromo- and extraterminal (BET) domain-containing family of epigenetic readers which is under intensive investigation as a target for anti-tumor therapy. BRD4 plays a central role in promoting the expression of select subsets of genes including many driven by oncogenic transcription factors and signaling pathways. However, the role of BRD4 and the effects of BET inhibitors in non-transformed cells remain mostly unclear. We demonstrate that BRD4 is required for the maintenance of a basal epithelial phenotype by regulating the expression of epithelial-specific genes including TP63 and Grainy Head-like transcription factor-3 (GRHL3) in non-transformed basal-like mammary epithelial cells. Moreover, BRD4 occupancy correlates with enhancer activity and enhancer RNA (eRNA) transcription. Motif analyses of cell context-specific BRD4-enriched regions predicted the involvement of FOXO transcription factors. Consistently, activation of FOXO1 function via inhibition of EGFR-AKT signaling promoted the expression of TP63 and GRHL3. Moreover, activation of Src kinase signaling and FOXO1 inhibition decreased the expression of FOXO/BRD4 target genes. Together, our findings support a function for BRD4 in promoting basal mammary cell epithelial differentiation, at least in part, by regulating FOXO factor function on enhancers to activate TP63 and GRHL3 expression.


Nucleic Acids Research | 2018

A context-specific cardiac β-catenin and GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving disease progression in the adult heart

Lavanya M Iyer; Sankari Nagarajan; Monique Woelfer; Eric Schoger; Sara Khadjeh; Maria Patapia Zafiriou; Vijayalakshmi Kari; Jonas Herting; Sze Ting Pang; Tobias Weber; Franziska S Rathjens; Thomas H. Fischer; Karl Toischer; Gerd Hasenfuss; Claudia Noack; Steven A. Johnsen; Laura Zelarayan

Abstract Chromatin remodelling precedes transcriptional and structural changes in heart failure. A body of work suggests roles for the developmental Wnt signalling pathway in cardiac remodelling. Hitherto, there is no evidence supporting a direct role of Wnt nuclear components in regulating chromatin landscapes in this process. We show that transcriptionally active, nuclear, phosphorylated(p)Ser675-β-catenin and TCF7L2 are upregulated in diseased murine and human cardiac ventricles. We report that inducible cardiomyocytes (CM)-specific pSer675-β-catenin accumulation mimics the disease situation by triggering TCF7L2 expression. This enhances active chromatin, characterized by increased H3K27ac and TCF7L2 occupancies to cardiac developmental and remodelling genes in vivo. Accordingly, transcriptomic analysis of β-catenin stabilized hearts shows a strong recapitulation of cardiac developmental processes like cell cycling and cytoskeletal remodelling. Mechanistically, TCF7L2 co-occupies distal genomic regions with cardiac transcription factors NKX2–5 and GATA4 in stabilized-β-catenin hearts. Validation assays revealed a previously unrecognized function of GATA4 as a cardiac repressor of the TCF7L2/β-catenin complex in vivo, thereby defining a transcriptional switch controlling disease progression. Conversely, preventing β-catenin activation post-pressure-overload results in a downregulation of these novel TCF7L2-targets and rescues cardiac function. Thus, we present a novel role for TCF7L2/β-catenin in CMs-specific chromatin modulation, which could be exploited for manipulating the ubiquitous Wnt pathway.


Nucleic Acids Research | 2017

CHD1 regulates cell fate determination by activation of differentiation-induced genes

Simon J. Baumgart; Zeynab Najafova; Tareq Hossan; Wanhua Xie; Sankari Nagarajan; Vijayalakshmi Kari; Nicholas Ditzel; Moustapha Kassem; Steven A. Johnsen

Abstract The coordinated temporal and spatial activation of gene expression is essential for proper stem cell differentiation. The Chromodomain Helicase DNA-binding protein 1 (CHD1) is a chromatin remodeler closely associated with transcription and nucleosome turnover downstream of the transcriptional start site (TSS). In this study, we show that CHD1 is required for the induction of osteoblast-specific gene expression, extracellular-matrix mineralization and ectopic bone formation in vivo. Genome-wide occupancy analyses revealed increased CHD1 occupancy around the TSS of differentiation-activated genes. Furthermore, we observed that CHD1-dependent genes are mainly induced during osteoblast differentiation and are characterized by higher levels of CHD1 occupancy around the TSS. Interestingly, CHD1 depletion resulted in increased pausing of RNA Polymerase II (RNAPII) and decreased H2A.Z occupancy close to the TSS, but not at enhancer regions. These findings reveal a novel role for CHD1 during osteoblast differentiation and provide further insights into the intricacies of epigenetic regulatory mechanisms controlling cell fate determination.

Collaboration


Dive into the Sankari Nagarajan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Grundhoff

Heinrich Pette Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Upasana Bedi

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wanhua Xie

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge