Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanku Mallik is active.

Publication


Featured researches published by Sanku Mallik.


Journal of the American Chemical Society | 2008

Mechanistic studies of the triggered release of liposomal contents by matrix metalloproteinase-9.

Adekunle I. Elegbede; Jayati Banerjee; Andrea J. Hanson; Shakila Tobwala; Bratati Ganguli; Rongying Wang; Xiaoning Lu; D.K. Srivastava; Sanku Mallik

Matrix metalloproteinases (MMPs) constitute a class of extracellular-matrix-degrading enzymes overexpressed in many cancers and contribute to the metastatic ability of the cancer cells. We have recently demonstrated that liposomal contents can be released when triggered by the enzyme MMP-9. Herein, we report the results of our mechanistic studies of the MMP-9-triggered release of liposomal contents. We synthesized peptides containing the cleavage site for MMP-9 and conjugated them with fatty acids to prepare the corresponding lipopeptides. By employing circular dichroism (CD) spectroscopy, we demonstrated that the lipopeptides, when incorporated into liposomes, are demixed in the lipid bilayers and generate triple-helical structures. MMP-9 cleaves the triple-helical peptides, leading to the release of the liposomal contents. Other MMPs, which cannot hydrolyze triple-helical peptides, fail to release the contents from the liposomes. We also observed that the rate and extent of release of the liposomal contents depend on the mismatch between the acyl chains of the synthesized lipopeptide and phospholipid components of the liposomes. CD spectroscopic studies imply that the observed differences in the release reflect the ability of the liposomal membrane to anneal the defects following the enzymatic cleavage of the liposome-incorporated lipopeptides.


Biosensors and Bioelectronics | 2011

Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef.

Sindhuja Sankaran; Suranjan Panigrahi; Sanku Mallik

Detection of food-borne bacteria present in the food products is critical to prevent the spread of infectious diseases. Intelligent quality sensors are being developed for detecting bacterial pathogens such as Salmonella in beef. One of our research thrusts was to develop novel sensing materials sensitive to specific indicator alcohols at low concentrations. Present work focuses on developing olfactory sensors mimicking insect odorant binding protein to detect alcohols in low concentrations at room temperature. A quartz crystal microbalance (QCM) based sensor in conjunction with synthetic peptide was developed to detect volatile organic compounds indicative to Salmonella contamination in packaged beef. The peptide sequence used as sensing materials was derived from the amino acids sequence of Drosophila odorant binding protein, LUSH. The sensors were used to detect alcohols: 3-methyl-1-butanol and 1-hexanol. The sensors were sensitive to alcohols with estimated lower detection limits of <5 ppm. Thus, the LUSH-derived QCM sensors exhibited potential to detect alcohols at low ppm concentrations.


Bioconjugate Chemistry | 2009

Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9

Jayati Banerjee; Andrea J. Hanson; Bhushan Gadam; Adekunle I. Elegbede; Shakila Tobwala; Bratati Ganguly; Anil Wagh; Wallace W. Muhonen; Benedict Law; John B. Shabb; D. K. Srivastava; Sanku Mallik

Liposomes have been widely used as a drug delivery vehicle, and currently, more than 10 liposomal formulations are approved by the Food and Drug Administration for clinical use. However, upon targeting, the release of the liposome-encapsulated contents is usually slow. We have recently demonstrated that contents from appropriately formulated liposomes can be rapidly released by the cancer-associated enzyme matrix metalloproteinase-9 (MMP-9). Herein, we report our detailed studies to optimize the liposomal formulations. By properly selecting the lipopeptide, the major lipid component, and their relative amounts, we demonstrate that the contents are rapidly released in the presence of cancer-associated levels of recombinant human MMP-9. We observed that the degree of lipid mismatch between the lipopepides and the major lipid component profoundly affects the release profiles from the liposomes. By utilizing the optimized liposomal formulations, we also demonstrate that cancer cells (HT-29) which secrete low levels of MMP-9 failed to release a significant amount of the liposomal contents. Metastatic cancer cells (MCF7) secreting high levels of the enzyme rapidly release the encapsulated contents from the liposomes.


Biomaterials | 2014

Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells

Rahul Nahire; Manas K. Haldar; Shirshendu Paul; Avinash H. Ambre; Varsha Meghnani; Buddhadev Layek; Kalpana S. Katti; Kara N. Gange; Jagdish Singh; Kausik Sarkar; Sanku Mallik

Although liposomes are widely used as carriers of drugs and imaging agents, they suffer from a lack of stability and the slow release of the encapsulated contents at the targeted site. Polymersomes (vesicles of amphiphilic polymers) are considerably more stable compared to liposomes; however, they also demonstrate a slow release for the encapsulated contents, limiting their efficacy as a drug-delivery tool. As a solution, we prepared and characterized echogenic polymersomes, which are programmed to release the encapsulated drugs rapidly when incubated with cytosolic concentrations of glutathione. These vesicles encapsulated air bubbles inside and efficiently reflected diagnostic-frequency ultrasound. Folate-targeted polymersomes showed an enhanced uptake by breast and pancreatic-cancer cells in a monolayer as well as in three-dimensional spheroid cultures. Polymersomes encapsulated with the anticancer drugs gemcitabine and doxorubicin showed significant cytotoxicity to these cells. With further improvements, these vesicles hold the promise to serve as multifunctional nanocarriers, offering a triggered release as well as diagnostic ultrasound imaging.


Bioorganic & Medicinal Chemistry Letters | 2008

Synthesis of barbiturate-based methionine aminopeptidase-1 inhibitors

Manas K. Haldar; Michael D. Scott; Nitesh Sule; D.K. Srivastava; Sanku Mallik

The syntheses of a new class of barbiturate-based inhibitors for human and Escherichia Coli methionine aminopeptidase-1 (MetAP-1) are described. Some of the synthesized inhibitors show selective inhibition of the human enzyme with high potency.


Therapeutic Delivery | 2015

Polymersome-based drug-delivery strategies for cancer therapeutics

Tayebeh Anajafi; Sanku Mallik

Polymersomes are stable vesicles prepared from amphiphilic polymers and are more stable compared with liposomes. Although these nanovesicles have many attractive properties for in vitro/in vivo applications, liposome-based drug delivery systems are still prevalent in the market. In order to expedite the translational potential and to provide medically valuable formulations, the polymersomes need to be biocompatible and biodegradable. In this review, recent developments for biocompatible and biodegradable polymersomes, including the design of intelligent, targeted, and stimuli-responsive vesicles are summarized.


Molecular Pharmaceutics | 2014

MMP‑9 Responsive PEG Cleavable Nanovesicles for Efficient Delivery of Chemotherapeutics to Pancreatic Cancer

Prajakta Kulkarni; Manas K. Haldar; Rahul Nahire; Preeya Katti; Avinash H. Ambre; Wallace W. Muhonen; John B. Shabb; S K R Padi; Raushan K. Singh; P. P. Borowicz; D. K. Shrivastava; Kalpana S. Katti; Katie M. Reindl; Bin Guo; Sanku Mallik

Significant differences in biochemical parameters between normal and tumor tissues offer an opportunity to chemically design drug carriers which respond to these changes and deliver the drugs at the desired site. For example, overexpression of the matrix metalloproteinase-9 (MMP-9) enzyme in the extracellular matrix of tumor tissues can act as a trigger to chemically modulate the drug delivery from the carriers. In this study, we have synthesized an MMP-9-cleavable, collagen mimetic lipopeptide which forms nanosized vesicles with the POPC, POPE-SS-PEG, and cholesteryl-hemisuccinate lipids. The lipopeptide retains the triple-helical conformation when incorporated into these nanovesicles. The PEG groups shield the substrate lipopeptides from hydrolysis by MMP-9. However, in the presence of elevated glutathione levels, the PEG groups are reductively removed, exposing the lipopeptides to MMP-9. The resultant peptide-bond cleavage disturbs the vesicles’ lipid bilayer, leading to the release of encapsulated contents. These PEGylated nanovesicles are capable of encapsulating the anticancer drug gemcitabine with 50% efficiency. They were stable in physiological conditions and in human serum. Effective drug release was demonstrated using the pancreatic ductal carcinoma cells (PANC-1 and MIAPaCa-2) in two-dimensional and three-dimensional “tumor-like” spheroid cultures. A reduction in tumor growth was observed after intravenous administration of the gemcitabine-encapsulated nanovesicles in the xenograft model of athymic, female nude mice.


Small | 2013

Polymeric Nanoparticles with Sequential and Multiple FRET Cascade Mechanisms for Multicolor and Multiplexed Imaging

Anil Wagh; Faidat Jyoti; Sanku Mallik; Steven Y. Qian; Estelle Leclerc; Benedict Law

The ability to map multiple biomarkers at the same time has far-reaching biomedical and diagnostic applications. Here, a series of biocompatible poly(D,L-lactic-co-glycolic acid) and polyethylene glycol particles for multicolor and multiplexed imaging are reported. More than 30 particle formulations that exhibit distinct emission signatures (ranging from the visible to NIR wavelength region) are designed and synthesized. These particles are encapsulated with combinations of carbocyanine-based fluorophores DiO, Dil, DiD, and DiR, and are characterized as <100 nm in size and brighter than commercial quantum dots. A particle formulation is identified that simultaneously emits fluorescence at three different wavelengths upon a single excitation at 485 nm via sequential and multiple FRET cascade events for multicolor imaging. Three other particles that display maximum fluorescence intensities at 570, 672, or 777 nm for multiplexed imaging are also identified. These particles are individually conjugated with specific (Herceptin or IgG2A11 antibody) or nonspecific (heptaarginine) ligands for targeting and, thus, could be applied to differentiate different cancer cells from a cell mixture according to the expressions of cell-surface human epidermal growth factor receptor 2 and the receptor for advanced glycation endproducts. Using an animal model subcutaneously implanted with the particles, it is further demonstrated that the developed platform could be useful for in vivo multiplexed imaging.


Molecular Pharmaceutics | 2012

Ultrasound Enhanced Matrix Metalloproteinase-9 Triggered Release of Contents from Echogenic Liposomes

Rahul Nahire; Shirshendu Paul; Michael D. Scott; Raushan K. Singh; Wallace W. Muhonen; John B. Shabb; Kara N. Gange; D. K. Srivastava; Kausik Sarkar; Sanku Mallik

The extracellular enzyme matrix metalloproteinase-9 (MMP-9) is overexpressed in atherosclerotic plaques and in metastatic cancers. The enzyme is responsible for rupture of the plaques and for the invasion and metastasis of a large number of cancers. The ability of ultrasonic excitation to induce thermal and mechanical effects has been used to release drugs from different carriers. However, the majority of these studies were performed with low frequency ultrasound (LFUS) at kilohertz frequencies. Clinical usage of LFUS excitations will be limited due to harmful biological effects. Herein, we report our results on the release of encapsulated contents from substrate lipopeptide incorporated echogenic liposomes triggered by recombinant human MMP-9. The contents release was further enhanced by the application of diagnostic frequency (3 MHz) ultrasound. The echogenic liposomes were successfully imaged employing a medical ultrasound transducer (4-15 MHz). The conditioned cell culture media from cancer cells (secreting MMP-9) released the encapsulated dye from the liposomes (30-50%), and this release is also increased (50-80%) by applying diagnostic frequency ultrasound (3 MHz) for 3 min. With further developments, these liposomes have the potential to serve as multimodal carriers for triggered release and simultaneous ultrasound imaging.


Chemical Communications | 2005

Uncorking of liposomes by matrix metalloproteinase-9

Nihar Sarkar; Theresa Rosendahl; Aaron B. Krueger; Abir L. Banerjee; Keith Benton; Sanku Mallik; D. K. Srivastava

A triggered release methodology of liposomal contents via the enzyme MMP-9 is described.

Collaboration


Dive into the Sanku Mallik's collaboration.

Top Co-Authors

Avatar

Manas K. Haldar

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

D. K. Srivastava

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Bidhan C. Roy

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Kausik Sarkar

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Yongki Choi

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Abir L. Banerjee

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.K. Srivastava

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Rahul Nahire

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Fataneh Karandish

North Dakota State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge