Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanna Lehtonen is active.

Publication


Featured researches published by Sanna Lehtonen.


Journal of The American Society of Nephrology | 2002

Nephrin TRAP Mice Lack Slit Diaphragms and Show Fibrotic Glomeruli and Cystic Tubular Lesions

Maija Rantanen; Tuula Palmén; Anu Pätäri; Heikki Ahola; Sanna Lehtonen; Eva Åström; Thomas Floss; Franz Vauti; Wolfgang Wurst; Patrizia Ruiz; Dontscho Kerjaschki; Harry Holthöfer

The molecular mechanisms maintaining glomerular filtration barrier are under intensive study. This study describes a mutant Nphs1 mouse line generated by gene-trapping. Nephrin, encoded by Nphs1, is a structural protein of interpodocyte filtration slits crucial for formation of primary urine. Nephrin(trap/trap) mutants show characteristic features of proteinuric disease and die soon after birth. Morphologically, fibrotic glomeruli with distorted structures and cystic tubular lesions were observed, but no prominent changes in the branching morphogenesis of the developing collecting ducts could be found. Western blotting and immunohistochemical analyses confirmed the absence of nephrin in nephrin(trap/trap) glomeruli. The immunohistochemical staining showed also that the interaction partner of nephrin, CD2-associated protein (CD2AP), and the slit-diaphragm-associated protein, ZO-1alpha (-), appeared unchanged, whereas the major anionic apical membrane protein of podocytes, podocalyxin, somewhat punctate as compared with the wild-type (wt) and nephrin(wt/trap) stainings. Electron microscopy revealed that >90% of the podocyte foot processes were fused. The remaining interpodocyte junctions lacked slit diaphragms and, instead, showed tight adhering areas. In the heterozygote glomeruli, approximately one third of the foot processes were fused and real-time RT-PCR showed >60% decrease of nephrin-specific transcripts. These results show an effective nephrin gene elimination, resulting in a phenotype that resembles human congenital nephrotic syndrome. Although the nephrin(trap/trap) mice can be used to study the pathophysiology of the disease, the heterozygous mice may provide a useful model to study the gene dose effect of this crucial protein of the glomerular filtration barrier.


Journal of Cell Science | 2008

The R-Ras interaction partner ORP3 regulates cell adhesion

Markku Lehto; Mikko I. Mäyränpää; Teijo Pellinen; Pekka Ihalmo; Sanna Lehtonen; Petri T. Kovanen; Per-Henrik Groop; Johanna Ivaska; Vesa M. Olkkonen

Oxysterol-binding protein (OSBP)-related protein 3 (ORP3) is highly expressed in epithelial, neuronal and hematopoietic cells, as well as in certain forms of cancer. We assessed the function of ORP3 in HEK293 cells and in human macrophages. We show that ORP3 interacts with R-Ras, a small GTPase regulating cell adhesion, spreading and migration. Gene silencing of ORP3 in HEK293 cells results in altered organization of the actin cytoskeleton, impaired cell-cell adhesion, enhanced cell spreading and an increase of β1 integrin activity–effects similar to those of constitutively active R-Ras(38V). Overexpression of ORP3 leads to formation of polarized cell-surface protrusions, impaired cell spreading and decreased β1 integrin activity. In primary macrophages, overexpression of ORP3 leads to the disappearance of podosomal structures and decreased phagocytotic uptake of latex beads, consistent with a role in actin regulation. ORP3 is phosphorylated when cells lose adhesive contacts, suggesting that it is subject to regulation by outside-in signals mediated by adhesion receptors. The present findings demonstrate a new function of ORP3 as part of the machinery that controls the actin cytoskeleton, cell polarity and cell adhesion.


Journal of The American Society of Nephrology | 2002

Interaction of Endogenous Nephrin and CD2-Associated Protein in Mouse Epithelial M-1 Cell Line

Tuula Palmén; Sanna Lehtonen; Ari Ora; Dontscho Kerjaschki; Corinne Antignac; Eero Lehtonen; Harry Holthöfer

The interpodocyte slit diaphragm is an essential structure for maintaining the functional glomerular filtration barrier. The slit diaphragm is proposed to consist of an interacting meshwork of nephrin molecules. Earlier studies with tagged proteins have suggested that the intracellular part of nephrin interacts with CD2-associated protein (CD2AP). This study was addressed to show by coimmunoprecipitation and pulldown assays an interaction of endogenously expressed nephrin and CD2AP in the kidney-derived mouse epithelial M-1 cell line, to provide evidence of the domain(s) of CD2AP involved in the interaction, and to show the localization of the respective proteins by immunoelectron microscopy in kidney cortex. In addition, the localization of CD2AP, podocin, alpha-actinin 4, and nephrin was studied in human kidney glomeruli and in M-1 cells by immunofluorescence microscopy. The results indicate an endogenous interaction between nephrin and CD2AP in M-1 cells and suggest that this interaction is mediated by the third Src homology 3 (SH3) domain of CD2AP. We also show by immunoelectron microscopy that nephrin and CD2AP are detected at the slit diaphragm area, supporting their interaction in the glomeruli in vivo. In addition, nephrin was found to partially colocalize with CD2AP and podocin in double immunofluorescence microscopy, confirming the close proximity of these proteins and proposing that these proteins may belong to nephrin-associated protein complex in glomeruli. The existence of nephrin, CD2AP, podocin, and alpha-actinin 4 enables further characterization of their relationship in M-1 cells.


Nephrology Dialysis Transplantation | 2010

β-Catenin mediates adriamycin-induced albuminuria and podocyte injury in adult mouse kidneys

Eija Heikkilä; Juuso Juhila; Markus Lassila; Marcel Messing; Nina Perälä; Eero Lehtonen; Sanna Lehtonen; Joseph Sjef Verbeek; Harry Holthöfer

BACKGROUND Glomerular slit diaphragm (SD) represents a modified adherens junction composed of molecules belonging to both immunoglobulin and cadherin superfamilies. Cadherins associate with the cytosolic scaffolding protein beta-catenin, but the precise role of beta-catenin in mature or injured podocytes is not known. METHODS The conditional podocyte-specific beta-catenin-deficient mouse line was generated using the doxycycline-inducible Cre-loxP system. Expression of the beta-catenin-deficient gene was turned off at the age of 8 weeks by doxycycline treatment and the kidney phenotype was analysed. In addition, beta-catenin-deficient and control mice were treated with adriamycin (ADR) and analysed for albuminuria and morphological alterations. RESULTS Deletion of beta-catenin in mature podocytes did not change the morphology of podocytes nor did it lead to albuminuria. However, lack of beta-catenin attenuated albuminuria after ADR treatment. Electron microscopic examination showed increased podocyte foot process effacement associated with SD abnormalities in ADR-treated control mice compared to beta-catenin-deficient mice. CONCLUSIONS These results show that beta-catenin in podocytes is dispensable for adult mice, but appears to be important in modulating the SD during ADR-induced perturbation of the filtration barrier.


Journal of Cell Science | 2011

Missing-in-metastasis MIM/MTSS1 promotes actin assembly at intercellular junctions and is required for integrity of kidney epithelia.

Juha Saarikangas; Pieta K. Mattila; Markku Varjosalo; Miia Bovellan; Janne Hakanen; Julia Calzada-Wack; Monica Tost; Luise Jennen; Birgit Rathkolb; Wolfgang Hans; Marion Horsch; Mervi E. Hyvönen; Nina Perälä; Helmut Fuchs; Valérie Gailus-Durner; Irene Esposito; Eckhard Wolf; Martin Hrabé de Angelis; Mikko J. Frilander; Harri Savilahti; Hannu Sariola; Kirsi Sainio; Sanna Lehtonen; Jussi Taipale; Marjo Salminen; Pekka Lappalainen

MIM/MTSS1 is a tissue-specific regulator of plasma membrane dynamics, whose altered expression levels have been linked to cancer metastasis. MIM deforms phosphoinositide-rich membranes through its I-BAR domain and interacts with actin monomers through its WH2 domain. Recent work proposed that MIM also potentiates Sonic hedgehog (Shh)-induced gene expression. Here, we generated MIM mutant mice and found that full-length MIM protein is dispensable for embryonic development. However, MIM-deficient mice displayed a severe urinary concentration defect caused by compromised integrity of kidney epithelia intercellular junctions, which led to bone abnormalities and end-stage renal failure. In cultured kidney epithelial (MDCK) cells, MIM displayed dynamic localization to adherens junctions, where it promoted Arp2/3-mediated actin filament assembly. This activity was dependent on the ability of MIM to interact with both membranes and actin monomers. Furthermore, results from the mouse model and cell culture experiments suggest that full-length MIM is not crucial for Shh signaling, at least during embryogenesis. Collectively, these data demonstrate that MIM modulates interplay between the actin cytoskeleton and plasma membrane to promote the maintenance of intercellular contacts in kidney epithelia.


Molecular Biology of the Cell | 2012

Septin 7 forms a complex with CD2AP and nephrin and regulates glucose transporter trafficking.

Anita A. Wasik; Zydrune Polianskyte-Prause; Meng-Qiu Dong; Andrey S. Shaw; John R. Yates; Marilyn G. Farquhar; Sanna Lehtonen

Septin 7 is expressed in glomerular podocytes and interacts with nephrin, CD2-associated protein (CD2AP), and vesicle-associated membrane protein 2. The filamentous localization of septin 7 in podocytes depends on CD2AP and intact actin organization. Depletion of septin 7 or inhibition of septin assembly facilitates glucose uptake into cells. The data suggest that septin 7 hinders vesicle trafficking.


Molecular and Cellular Endocrinology | 2010

Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes

Mervi E. Hyvönen; Pauliina Saurus; Anita A. Wasik; Eija Heikkilä; Marika Havana; Ras Trokovic; Moin A. Saleem; Harry Holthöfer; Sanna Lehtonen

Podocyte injury plays an important role in the development of diabetic nephropathy. Podocytes are insulin-responsive and can develop insulin resistance, but the mechanisms are unknown. To study the role of CD2-associated protein (CD2AP) in podocyte injury, we performed a yeast two-hybrid screening on a glomerular library, and found that CD2AP bound to SH2-domain-containing inositol polyphosphate 5-phosphatase 2 (SHIP2), a negative regulator of insulin signalling. SHIP2 interacts with CD2AP in glomeruli and is expressed in podocytes, where it translocates to plasma membrane after insulin stimulation. Overexpression of SHIP2 in cultured podocytes reduces Akt activation in response to insulin, and promotes apoptosis. SHIP2 is upregulated in glomeruli of insulin resistant obese Zucker rats. These results indicate that SHIP2 downregulates insulin signalling in podocytes. The upregulation of SHIP2 in Zucker rat glomeruli prior to the age of onset of proteinuria suggests a possible role for SHIP2 in the development of podocyte injury.


Biochemical Journal | 2011

Trans-interaction of nephrin and Neph1/Neph3 induces cell adhesion that associates with decreased tyrosine phosphorylation of nephrin

Eija Heikkilä; Mervi Ristola; Marika Havana; Nina Jones; Harry Holthöfer; Sanna Lehtonen

Slit diaphragms are specialized junctions between glomerular epithelial cells (podocytes) that are crucial for glomerular ultrafiltration. The Ig superfamily members nephrin and Neph1 are essential components of the slit diaphragm, whereas the role of Neph1 homologue Neph3 in the slit diaphragm is unknown. In the present paper we show that Neph3 homodimerizes and heterodimerizes with nephrin and Neph1. We further investigated whether these interactions play a role in cell adhesion by using mouse L fibroblasts that lack endogenous cell-adhesion activity and found that Neph1 and Neph3 are able to induce cell adhesion alone, whereas nephrin needs to trans-interact with Neph1 or Neph3 in order to promote formation of cell-cell contacts. Tyrosine phosphorylation of nephrin was down-regulated after nephrin trans-interacted with either Neph1 or Neph3 leading to formation of cell-cell contacts. We further found that the expression of Neph3 was increased in nephrin-deficient mouse podocytes. The findings of the present paper show that nephrin and Neph1 or Neph3 trans-interactions promote cell-contact formation, suggesting that they may also function together in slit diaphragm assembly.


Cell Death and Disease | 2015

Podocyte apoptosis is prevented by blocking the Toll-like receptor pathway

Pauliina Saurus; Sara Kuusela; Eero Lehtonen; Mervi E. Hyvönen; M Ristola; Christopher L. Fogarty; J Tienari; Mariann I. Lassenius; Carol Forsblom; Markku Lehto; Moin A. Saleem; Per-Henrik Groop; Harry Holthöfer; Sanna Lehtonen

High serum lipopolysaccharide (LPS) activity in normoalbuminuric patients with type 1 diabetes (T1D) predicts the progression of diabetic nephropathy (DN), but the mechanisms behind this remain unclear. We observed that treatment of cultured human podocytes with sera from normoalbuminuric T1D patients with high LPS activity downregulated 3-phosphoinositide-dependent kinase-1 (PDK1), an activator of the Akt cell survival pathway, and induced apoptosis. Knockdown of PDK1 in cultured human podocytes inhibited antiapoptotic Akt pathway, stimulated proapoptotic p38 MAPK pathway, and increased apoptosis demonstrating an antiapoptotic role for PDK1 in podocytes. Interestingly, PDK1 was downregulated in the glomeruli of diabetic rats and patients with type 2 diabetes before the onset of proteinuria, further suggesting that reduced expression of PDK1 associates with podocyte injury and development of DN. Treatment of podocytes in vitro and mice in vivo with LPS reduced PDK1 expression and induced apoptosis, which were prevented by inhibiting the Toll-like receptor (TLR) signaling pathway with the immunomodulatory agent GIT27. Our data show that LPS downregulates the cell survival factor PDK1 and induces podocyte apoptosis, and that blocking the TLR pathway with GIT27 may provide a non-nephrotoxic means to prevent the progression of DN.


Molecular and Cellular Biochemistry | 2007

Densin and beta-catenin form a complex and co-localize in cultured podocyte cell junctions

Eija Heikkilä; Mervi Ristola; Karlhans Endlich; Sanna Lehtonen; Markus Lassila; Marika Havana; Nicole Endlich; Harry Holthöfer

Densin is a member of LAP (leucine-rich repeat and PDZ domain) protein family that localizes in kidney to slit diaphragms, which are essential components of the glomerular filtration barrier. We have previously shown that densin interacts with a crucial slit diaphragm protein, nephrin. Here, we searched for novel binding partners of densin by yeast-two hybrid assay and identified beta-catenin. The interaction was confirmed by reciprocal co-immunoprecipitation assay and the binding site in densin was determined by GST-pull down assays. The GST-tagged densin was also able to pull down P-cadherin together with beta-catenin from human kidney glomerular lysates. Furthermore, densin co-localized with beta-catenin and F-actin in cell–cell contacts in cultured mouse podocytes. During cell–cell contact disruption and reformation densin and beta-catenin were dislocated from and relocated back to plasma membrane in a similar fashion. These and our previous findings suggest that densin may associate with the cadherin-catenin and nephrin complex(es), and may be involved in the formation of the cell–cell contacts including the slit diaphragm.

Collaboration


Dive into the Sanna Lehtonen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Dash

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge