Sanna R. Rijpma
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sanna R. Rijpma.
The FASEB Journal | 2014
Takeshi Annoura; Ben C. L. van Schaijk; Ivo Ploemen; Mohammed Sajid; Jing-wen Lin; Martijn W. Vos; Avinash G. Dinmohamed; Daniel Ken Inaoka; Sanna R. Rijpma; Geert-Jan van Gemert; Séverine Chevalley-Maurel; Szymon M. Kielbasa; Fay Scheltinga; Blandine Franke-Fayard; Onny Klop; Cornelus C. Hermsen; Kiyoshi Kita; Audrey Gego; Jean-François Franetich; Dominique Mazier; Stephen L. Hoffman; Chris J. Janse; Robert W. Sauerwein; Shahid M. Khan
The 10 Plasmodium 6‐Cys proteins have critical roles throughout parasite development and are targets for antimalaria vaccination strategies. We analyzed the conserved 6‐cysteine domain of this family and show that only the last 4 positionally conserved cysteine residues are diagnostic for this domain and identified 4 additional “6‐Cys family‐related” proteins. Two of these, sequestrin and B9, are critical to Plasmodium liver‐stage development. RT‐PCR and immunofluorescence assays show that B9 is translationally repressed in sporozoites and is expressed after hepatocyte invasion where it localizes to the parasite plasma membrane. Mutants lacking B9 expression in the rodent malaria parasites P. berghei and P. yoelii and the human parasite P. falciparum developmentally arrest in hepatocytes. P. berghei mutants arrest in the livers of BALB/c (100%) and C57BL6 mice (>99.9%), and in cultures of Huh7 human‐hepatoma cell line. Similarly, P. falciparum mutants while fully infectious to primary human hepatocytes abort development 3 d after infection. This growth arrest is associated with a compromised parasitophorous vacuole membrane a phenotype similar to, but distinct from, mutants lacking the 6‐Cys sporozoite proteins P52 and P36. Our results show that 6‐Cys proteins have critical but distinct roles in establishment and maintenance of a parasitophorous vacuole and subsequent liver‐stage development—Annoura, T., van Schaijk, B. C. L., Ploemen, I. H. J., Sajid, M., Lin, J.‐W., Vos, M. W., Dinmohamed, A G., Inaoka, D. K., Rijpma, S. R., van Gemert, G.‐J., Chevalley‐Maurel, S., Kiełbasa, S. M., Scheltinga, F., Franke‐Fayard, B., Klop, O. Hermsen, C. C., Kita, K., Gego, A., Franetich, J.‐F., Mazier, D., Hoffman, S. L., Janse, C. J., Sauerwein, R. W., Khan, S. M. Two Plasmodium 6‐Cys family‐related proteins have distinct and critical roles in liver‐stage development. FASEB J. 28, 2158–2170 (2014). www.fasebj.org
Nucleic Acids Research | 2016
Edwin Lasonder; Sanna R. Rijpma; Ben C. L. van Schaijk; Wieteke A. M. Hoeijmakers; Philip R. Kensche; Mark S. Gresnigt; Annet Italiaander; Martijn W. Vos; Rob Woestenenk; Teun Bousema; Gunnar R. Mair; Shahid M. Khan; Chris J. Janse; Richárd Bártfai; Robert W. Sauerwein
Sexual differentiation of malaria parasites into gametocytes in the vertebrate host and subsequent gamete fertilization in mosquitoes is essential for the spreading of the disease. The molecular processes orchestrating these transitions are far from fully understood. Here, we report the first transcriptome analysis of male and female Plasmodium falciparum gametocytes coupled with a comprehensive proteome analysis. In male gametocytes there is an enrichment of proteins involved in the formation of flagellated gametes; proteins involved in DNA replication, chromatin organization and axoneme formation. On the other hand, female gametocytes are enriched in proteins required for zygote formation and functions after fertilization; protein-, lipid- and energy-metabolism. Integration of transcriptome and proteome data revealed 512 highly expressed maternal transcripts without corresponding protein expression indicating large scale translational repression in P. falciparum female gametocytes for the first time. Despite a high degree of conservation between Plasmodium species, 260 of these ‘repressed transcripts’ have not been previously described. Moreover, for some of these genes, protein expression is only reported in oocysts and sporozoites indicating that repressed transcripts can be partitioned into short- and long-term storage. Finally, these data sets provide an essential resource for identification of vaccine/drug targets and for further mechanistic studies.
Parasitology | 2016
Will Stone; Sandra K. Nilsson; Chris Drakeley; Matthias Marti; Teun Bousema; Sanna R. Rijpma
Gametocytes are the specialized form of Plasmodium parasites that are responsible for human-to-mosquito transmission of malaria. Transmission of gametocytes is highly effective, but represents a biomass bottleneck for the parasite that has stimulated interest in strategies targeting the transmission stages separately from those responsible for clinical disease. Studying targets of naturally acquired immunity against transmission-stage parasites may reveal opportunities for novel transmission reducing interventions, particularly the development of a transmission blocking vaccine (TBV). In this review, we summarize the current knowledge on immunity against the transmission stages of Plasmodium. This includes immune responses against epitopes on the gametocyte-infected erythrocyte surface during gametocyte development, as well as epitopes present upon gametocyte activation in the mosquito midgut. We present an analysis of historical data on transmission reducing immunity (TRI), as analysed in mosquito feeding assays, and its correlation with natural recognition of sexual stage specific proteins Pfs48/45 and Pfs230. Although high antibody titres towards either one of these proteins is associated with TRI, the presence of additional, novel targets is anticipated. In conclusion, the identification of novel gametocyte-specific targets of naturally acquired immunity against different gametocyte stages could aid in the development of potential TBV targets and ultimately an effective transmission blocking approach.
The Journal of Infectious Diseases | 2017
Will Stone; Patrick Sawa; Kjerstin Lanke; Sanna R. Rijpma; Robin Oriango; Maureen Nyaurah; Paul Osodo; Victor Osoti; Almahamoudou Mahamar; Halimatou Diawara; Rob Woestenenk; Wouter Graumans; Marga van de Vegte-Bolmer; John S. Bradley; Ingrid Chen; Joelle Brown; Giulia Siciliano; Pietro Alano; Roly Gosling; Alassane Dicko; Chris Drakeley; Teun Bousema
Summary A sensitive molecular assay was developed to quantify male and female Plasmodium falciparum gametocytes. Its application in 2 clinical trials demonstrates that the early effects of primaquine may be due to gametocyte fitness rather than sex ratio.
Cellular Microbiology | 2015
Sanna R. Rijpma; Maarten van der Velden; Maria Gonzalez-Pons; Takeshi Annoura; Ben C. L. van Schaijk; Geert-Jan van Gemert; Jeroen J. M. W. Heuvel; Jai Ramesar; Séverine Chevalley-Maurel; Ivo Ploemen; Shahid M. Khan; Jean-François Franetich; Dominique Mazier; Johannes H. W. de Wilt; Adelfa E. Serrano; Frans G. M. Russel; Chris J. Janse; Robert W. Sauerwein; Jan B. Koenderink; Blandine Franke-Fayard
Multidrug resistance‐associated proteins (MRPs) belong to the C‐family of ATP‐binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug‐sensitivity profiles as wild type parasites. We show that MRP1‐deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2‐deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development.
Cellular Microbiology | 2016
Sanna R. Rijpma; Maarten van der Velden; Maria Gonzalez-Pons; Takeshi Annoura; Ben C. L. van Schaijk; Geert-Jan van Gemert; Jeroen J. M. W. van den Heuvel; Jai Ramesar; Séverine Chevalley-Maurel; Ivo Ploemen; Shahid M. Khan; Jean-François Franetich; Dominique Mazier; Johannes H. W. de Wilt; Adelfa E. Serrano; Frans G. M. Russel; Chris J. Janse; Robert W. Sauerwein; Jan B. Koenderink; Blandine Franke-Fayard
Multidrug resistance‐associated proteins (MRPs) belong to the C‐family of ATP‐binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug‐sensitivity profiles as wild type parasites. We show that MRP1‐deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2‐deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development.
Malaria Journal | 2015
Maarten van der Velden; Sanna R. Rijpma; Frans G. M. Russel; Robert W. Sauerwein; Jan B. Koenderink
BackgroundMembrane-associated ATP binding cassette (ABC) transport proteins hydrolyze ATP in order to translocate a broad spectrum of substrates, from single ions to macromolecules across membranes. In humans, members from this transport family have been linked to drug resistance phenotypes, e.g., tumour resistance by enhanced export of chemotherapeutic agents from cancer cells due to gene amplifications or polymorphisms in multidrug resistance (MDR) protein 1. Similar mechanisms have linked the Plasmodium falciparum PfMDR1 transporter to anti-malarial drug resistance acquisition. In this study, the possible involvement of two related MDR proteins, PfMDR2 and PfMDR5, to emerging drug resistance is investigated by a reverse genetics approach.MethodsA homologous double crossover strategy was used to generate P. falciparum parasites lacking the Pfmdr2 (PfΔmdr2) or Pfmdr5 (PfΔmdr5) gene. Plasmodium lactate dehydrogenase activity was used as read-out for sensitivity to artemisinin (ART), atovaquone (ATO), dihydroartemisinin (DHA), chloroquine (CQ), lumefantrine (LUM), mefloquine (MQ), and quinine (QN). Differences in half maximal inhibitory concentration (IC50) values between wild type and each mutant line were determined using a paired t-test.ResultsBoth PfΔmdr2 and PfΔmdr5 clones were capable of asexual multiplication. Upon drug exposure, PfΔmdr2 showed a marginally decreased sensitivity to ATO (IC50 of 1.2 nM to 1.8 nM), MQ (124 nM to 185 nM) and QN (40 nM to 70 nM), as compared to wild type (NF54) parasites. On the other hand, PfΔmdr5 showed slightly increased sensitivity to ART (IC50 of 26 nM to 19 nM).ConclusionBoth Pfmdr2 and Pfmdr5 are dispensable for blood stage development while the deletion lines show altered sensitivity profiles to commonly used anti-malarial drugs. The findings show for the first time that next to PfMDR2, the PfMDR5 transport protein could play a role in emerging drug resistance.
Molecular Microbiology | 2016
Sanna R. Rijpma; Maarten van der Velden; Takeshi Annoura; Joachim M. Matz; Sanketha Kenthirapalan; Taco W. A. Kooij; Geert-Jan van Gemert; Marga van de Vegte-Bolmer; Rianne Siebelink-Stoter; Wouter Graumans; Jai Ramesar; Onny Klop; Frans G. M. Russel; Robert W. Sauerwein; Chris J. Janse; Blandine Franke-Fayard; Jan B. Koenderink
Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species.
American Journal of Tropical Medicine and Hygiene | 2017
Fitsum G. Tadesse; Kjerstin Lanke; Issa Nebie; Jodie Schildkraut; Bronner P. Gonçalves; Alfred B. Tiono; Robert W. Sauerwein; Chris Drakeley; Teun Bousema; Sanna R. Rijpma
Abstract. Plasmodium falciparum parasite life stages respond differently to antimalarial drugs. Sensitive stage-specific molecular assays may help to examine parasite dynamics at microscopically detectable and submicroscopic parasite densities in epidemiological and clinical studies. In this study, we compared the performance of skeleton-binding protein 1 (SBP1), ring-infected erythrocyte surface antigen, Hyp8, ring-exported protein 1 (REX1), and PHISTb mRNA for detecting ring-stage trophozoite-specific transcripts using quantitative reverse transcriptase polymerase chain reaction. Markers were tested on tightly synchronized in vitro parasites and clinical trial samples alongside established markers of parasite density (18S DNA and rRNA) and gametocyte density (Pfs25 mRNA). SBP1 was the most sensitive marker but showed low-level expression in mature gametocytes. Novel markers REX1 and PHISTb showed lower sensitivity but higher specificity for ring-stage trophozoites. Using in vivo clinical trial samples from gametocyte-negative patients, we observed evidence of persisting trophozoite transcripts for at least 14 days postinitiation of treatment. It is currently not clear if these transcripts represent viable parasites that may have implications for clinical treatment outcome or transmission potential.
American Journal of Tropical Medicine and Hygiene | 2017
B. J. Taylor; Kjerstin Lanke; S. L. Banman; Isabelle Morlais; Merribeth J. Morin; Teun Bousema; Sanna R. Rijpma; S. K. Yanow
We describe a novel one-step reverse transcriptase real-time PCR (direct RT-PCR) for Plasmodium falciparum malaria parasites that amplifies RNA targets directly from blood. We developed the assay to identify gametocyte-specific transcripts in parasites from patient blood samples, as a means of monitoring malaria parasite transmission in field settings. To perform the test, blood is added directly to a master mix in PCR tubes and analyzed by real-time PCR. The limit of detection of the assay on both conventional and portable real-time PCR instruments was 100 parasites/mL for 18S rRNA, and 1,000 parasites/mL for asexual (PFE0065W) and gametocyte (PF14_0367, PFGEXP5) mRNA targets. The usefulness of this assay in field studies was explored in samples from individuals living in a high-transmission region in Cameroon. The sensitivity and specificity of the assay compared with a standard two-step RT-PCR was 100% for 18S rRNA on both conventional and portable instruments. For PF14_0367, the sensitivity and specificity were 85.7% and 70.0%, respectively, on the conventional instrument and 78.6% and 90%, respectively, on the portable instrument. The concordance for assays run on the two instruments was 100% for 18S rRNA, and 79.2% for PF14_0367, with most discrepancies resulting from samples with low transcript levels. The results show asexual and sexual stage RNA targets can be detected directly from blood samples in a simple one-step test on a field-friendly instrument. This assay may be useful for monitoring malaria parasite transmission potential in elimination settings, where sensitive diagnostics are needed to evaluate the progress of malaria eradication initiatives.