Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Santosh Chauhan is active.

Publication


Featured researches published by Santosh Chauhan.


Developmental Cell | 2014

TRIM Proteins Regulate Autophagy and Can Target Autophagic Substrates by Direct Recognition

Michael A. Mandell; Ashish Jain; John Arko-Mensah; Santosh Chauhan; Tomonori Kimura; Christina Dinkins; Guido Silvestri; Jan Münch; Frank Kirchhoff; Anne Simonsen; Yongjie Wei; Beth Levine; Terje Johansen; Vojo Deretic

Autophagy, a homeostatic process whereby eukaryotic cells target cytoplasmic cargo for degradation, plays a broad role in health and disease states. Here we screened the TRIM family for roles in autophagy and found that half of TRIMs modulated autophagy. In mechanistic studies, we show that TRIMs associate with autophagy factors and act as platforms assembling ULK1 and Beclin 1 in their activated states. Furthermore, TRIM5α acts as a selective autophagy receptor. Based on direct sequence-specific recognition, TRIM5α delivered its cognate cytosolic target, a viral capsid protein, for autophagic degradation. Thus, our study establishes that TRIMs can function both as regulators of autophagy and as autophagic cargo receptors, and reveals a basis for selective autophagy in mammalian cells.


Molecular Cell | 2013

ZKSCAN3 Is a Master Transcriptional Repressor of Autophagy

Santosh Chauhan; Jinesh G. Goodwin; Swati Chauhan; Ganiraju C. Manyam; Jing Wang; Ashish M. Kamat; Douglas D. Boyd

Autophagy constitutes a major cell-protective mechanism that eliminates damaged components and maintains energy homeostasis via recycling nutrients under normal/stressed conditions. Although the core components of autophagy have been well studied, regulation of autophagy at the transcriptional level is poorly understood. Herein, we establish ZKSCAN3, a zinc finger family DNA-binding protein, as a transcriptional repressor of autophagy. Silencing of ZKSCAN3 induced autophagy and increased lysosome biogenesis. Importantly, we show that ZKSCAN3 represses transcription of a large gene set (>60) integral to, or regulatory for, autophagy and lysosome biogenesis/function and that a subset of these genes, including Map1lC3b and Wipi2, represent direct targets. Interestingly, ZKSCAN3 and TFEB are oppositely regulated by starvation and in turn oppositely regulate lysosomal biogenesis and autophagy, suggesting that they act in conjunction. Altogether, our study uncovers an autophagy master switch regulating the expression of a transcriptional network of genes integral to autophagy and lysosome biogenesis/function.


Current Biology | 2014

Neutral Lipid Stores and Lipase PNPLA5 Contribute to Autophagosome Biogenesis

Nicolas Dupont; Santosh Chauhan; John Arko-Mensah; Eliseo F. Castillo; Andrius Masedunskas; Roberto Weigert; Horst Robenek; Tassula Proikas-Cezanne; Vojo Deretic

BACKGROUND Autophagy is a fundamental cell biological process whereby eukaryotic cells form membranes in the cytoplasm to sequester diverse intracellular targets. Although significant progress has been made in understanding the origins of autophagosomal organelles, the source of lipids that support autophagic membrane formation remain an important open question. RESULTS Here we show that lipid droplets as cellular stores of neutral lipids including triglycerides contribute to autophagic initiation. Lipid droplets, as previously shown, were consumed upon induction of autophagy by starvation. However, inhibition of autophagic maturation by blocking acidification or using dominant negative Atg4(C74A) that prohibits autophagosomal closure did not prevent disappearance of lipid droplets. Thus, lipid droplets continued to be utilized upon induction of autophagy, but not as autophagic substrates in a process referred to as lipophagy. We considered an alternative model whereby lipid droplets were consumed not as a part of lipophagy, but as a potential contributing source to the biogenesis of lipid precursors for nascent autophagosomes. We carried out a screen for a potential link between triglyceride mobilization and autophagy and identified a neutral lipase, PNPLA5, as being required for efficient autophagy. PNPLA5, which localized to lipid droplets, was needed for optimal initiation of autophagy. PNPLA5 was required for autophagy of diverse substrates, including degradation of autophagic adaptors, bulk proteolysis, mitochondrial quantity control, and microbial clearance. CONCLUSIONS Lipid droplets contribute to autophagic capacity by enhancing it in a process dependent on PNPLA5. Thus, neutral lipid stores are mobilized during autophagy to support autophagic membrane formation.


Journal of Clinical Investigation | 2015

Immunologic manifestations of autophagy

Vojo Deretic; Tomonori Kimura; Graham S. Timmins; Pope Moseley; Santosh Chauhan; Michael A. Mandell

The broad immunologic roles of autophagy span innate and adaptive immunity and are often manifested in inflammatory diseases. The immune effects of autophagy partially overlap with its roles in metabolism and cytoplasmic quality control but typically expand further afield to encompass unique immunologic adaptations. One of the best-appreciated manifestations of autophagy is protection against microbial invasion, but this is by no means limited to direct elimination of intracellular pathogens and includes a stratified array of nearly all principal immunologic processes. This Review summarizes the broad immunologic roles of autophagy. Furthermore, it uses the autophagic control of Mycobacterium tuberculosis as a paradigm to illustrate the breadth and complexity of the immune effects of autophagy.


Molecular Cell | 2015

IRGM Governs the Core Autophagy Machinery to Conduct Antimicrobial Defense

Santosh Chauhan; Michael A. Mandell; Vojo Deretic

IRGM, encoded by a uniquely human gene conferring risk for inflammatory diseases, affects autophagy through an unknown mechanism. Here, we show how IRGM controls autophagy. IRGM interacts with ULK1 and Beclin 1 and promotes their co-assembly thus governing the formation of autophagy initiation complexes. We further show that IRGM interacts with pattern recognition receptors including NOD2. IRGM, NOD2, and ATG16L1, all of which are Crohns disease risk factors, form a molecular complex to modulate autophagic responses to microbial products. NOD2 enhances K63-linked polyubiquitination of IRGM, which is required for interactions of IRGM with the core autophagy factors and for microbial clearance. Thus, IRGM plays a direct role in organizing the core autophagy machinery to endow it with antimicrobial and anti-inflammatory functions.


Current Opinion in Microbiology | 2013

Autophagy as an immune effector against tuberculosis

Steven B. Bradfute; Eliseo F. Castillo; John Arko-Mensah; Santosh Chauhan; Shanya Jiang; Michael A. Mandell; Vojo Deretic

The now well-accepted innate immunity paradigm that autophagy acts as a cell-autonomous defense against intracellular bacteria has its key origins in studies with Mycobacterium tuberculosis, an important human pathogen and a model microorganism infecting macrophages. A number of different factors have been identified that play into the anti-mycobacterial functions of autophagy, and recent in vivo studies in the mouse model of tuberculosis have uncovered additional anti-inflammatory and tissue-sparing functions of autophagy. Complementing these observations, genome wide association studies indicate a considerable overlap between autophagy, human susceptibility to mycobacterial infections and predisposition loci for inflammatory bowel disease. Finally, recent studies show that autophagy is an important regulator and effector of IL-1 responses, and that autophagy intersects with type I interferon pathology-modulating responses.


Journal of Bacteriology | 2008

Cooperative Binding of Phosphorylated DevR to Upstream Sites Is Necessary and Sufficient for Activation of the Rv3134c-devRS Operon in Mycobacterium tuberculosis: Implication in the Induction of DevR Target Genes

Santosh Chauhan; Jaya Sivaswami Tyagi

The DevR-DevS two-component system of Mycobacterium tuberculosis mediates bacterial adaptation to hypoxia, a condition believed to be associated with the initiation and maintenance of dormant bacilli during latent tuberculosis. The activity of the Rv3134c-devRS operon was studied in M. tuberculosis using several transcriptional fusions comprised of promoter regions and the gfp reporter gene under inducing and aerobic conditions. Aerobic transcription was DevR independent, while hypoxic induction was completely DevR dependent. The hypoxia transcriptional start point, T(H), was mapped at -40 bp upstream of Rv3134c. In contrast, the divergently transcribed Rv3135 gene was not induced under hypoxic conditions. DNase I footprinting and mutational analyses demonstrated that induction required the interaction of DevR-P with binding sites centered at bp -42.5 and -63.5 relative to T(H). Binding to the distal site (D) was necessary to recruit another molecule of DevR-P to the proximal site (P), and interaction with both sequences was essential for promoter activation. These sites did not bind to either unphosphorylated or phosphorylation-defective DevR protein, which was consistent with an essential role for DevR-P in activation. Phosphorylated DevR also bound to three copies of the motif at the hspX promoter. The Rv3134c and hspX promoters have a similar architecture, wherein the proximal DevR-P binding site overlaps with the promoter -35 element. A model for the likely mode of action of DevR at these promoters is discussed.


Nucleic Acids Research | 2011

Comprehensive insights into Mycobacterium tuberculosis DevR (DosR) regulon activation switch

Santosh Chauhan; Deepak Sharma; Alka Singh; Avadhesha Surolia; Jaya Sivaswami Tyagi

DevR regulon function is believed to be crucial for the survival of Mycobacterium tuberculosis during dormancy. In this study, we undertook a comprehensive analysis of the DevR regulon. All the regulon promoters were assigned to four classes based on the number of DevR binding sites (Dev boxes). A minimum of two boxes are essential for complete interaction and their tandem arrangement is an architectural hallmark at all promoters. Initial interaction of DevR with the conserved box is essential for its cooperative binding to adjacent sites bearing low to very poor sequence conservation and is the universal mechanism underlying DevR-mediated transcriptional induction. The functional importance of tandem arrangement was established by analyzing promoter variants harboring Dev boxes with altered spacing. Conserved sequence logos were generated from 47 binding sequences which included 24 newly discovered Dev boxes. In each half site of an 18-bp binding motif, G5 and C7 are essential for DevR binding. Finally, we show that DevR regulon induction occurs in a temporal manner and genes that are induced early are also usually powerfully induced. The information theory-based approach along with binding and temporal expression studies provide us with comprehensive insights into the complex pattern of DevR regulon activation.


Journal of Bacteriology | 2008

Interaction of DevR with Multiple Binding Sites Synergistically Activates Divergent Transcription of narK2-Rv1738 Genes in Mycobacterium tuberculosis

Santosh Chauhan; Jaya Sivaswami Tyagi

Under hypoxic conditions or upon exposure to low concentrations of nitric oxide, DevR transcriptional regulator mediates the activation of approximately 50 genes that are believed to assist in dormancy development in Mycobacterium tuberculosis. Most of the strongly induced genes are characterized by the presence of one to four copies of a Dev box-like sequence at an upstream location. Among these are several gene pairs that are transcribed in opposite directions. This arrangement could provide for coordinated control of the adjacent genes under inducing conditions. In this work, we report the first detailed analysis of DevR-mediated hypoxic regulation of narK2-Rv1738 genes that are oppositely oriented in M. tuberculosis. Phosphorylated DevR interacts with intergenic sequences and protects approximately 80 bp of DNA that contains three binding sites, designated Dev boxes D1, D2, and D3. The hypoxia-specific transcription start points of narK2 and Rv1738 were mapped, and it was noted that the -35 elements of both promoters overlapped with the proximally placed Dev box. DevR bound cooperatively to adjacently placed D2 and D3 boxes while binding to D1 was independent of DevR interaction with the D2 and D3 boxes. Mutational analysis and green fluorescent protein reporter assays established that the three Dev boxes function synergistically to mediate maximal transcriptional induction of both narK2 and Rv1738 in hypoxic cultures of M. tuberculosis. Analysis of narK2 promoter activity indicates that it is under negative regulation in addition to DevR-mediated positive regulation and also reveals differences between M. tuberculosis and Mycobacterium bovis BCG.


Nature Communications | 2015

Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential

Santosh Chauhan; Zahra Ahmed; Steven B. Bradfute; John Arko-Mensah; Michael A. Mandell; Seong Won Choi; Tomonori Kimura; Fabien Blanchet; Anna Waller; Michal H. Mudd; Shanya Jiang; Larry A. Sklar; Graham S. Timmins; Nicole Maphis; Kiran Bhaskar; Vincent Piguet; Vojo Deretic

Autophagy is a conserved homeostatic process active in all human cells and affecting a spectrum of diseases. Here we use a pharmaceutical screen to discover new mechanisms for activation of autophagy. We identify a subset of pharmaceuticals inducing autophagic flux with effects in diverse cellular systems modelling specific stages of several human diseases such as HIV transmission and hyperphosphorylated tau accumulation in Alzheimers disease. One drug, flubendazole, is a potent inducer of autophagy initiation and flux by affecting acetylated and dynamic microtubules in a reciprocal way. Disruption of dynamic microtubules by flubendazole results in mTOR deactivation and dissociation from lysosomes leading to TFEB (transcription factor EB) nuclear translocation and activation of autophagy. By inducing microtubule acetylation, flubendazole activates JNK1 leading to Bcl-2 phosphorylation, causing release of Beclin1 from Bcl-2-Beclin1 complexes for autophagy induction, thus uncovering a new approach to inducing autophagic flux that may be applicable in disease treatment.

Collaboration


Dive into the Santosh Chauhan's collaboration.

Top Co-Authors

Avatar

Jaya Sivaswami Tyagi

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Vojo Deretic

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepak Sharma

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Douglas D. Boyd

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michal H. Mudd

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Seong Won Choi

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Swati Chauhan

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge