Saori Mori
Tokyo Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Saori Mori.
Nature | 1999
M. Uehara; Saori Mori; Cheng-Hsuan Chen; Sang-Wook Cheong
Colossal magnetoresistance—an unusually large change of resistivity observed in certain materials following application of magnetic field—has been extensively researched in ferromagnetic perovskite manganites. But it remains unclear why the magnetoresistive response increases dramatically when the Curie temperature (T C) is reduced. In these materials, T C varies sensitively with changing chemical pressure; this can be achieved by introducing trivalent rare-earth ions of differing size into the perovskite structure, without affecting the valency of the Mn ions. The chemical pressure modifies local structural parameters such as the Mn–O bond distance and Mn–O–Mn bond angle, which directly influence the case of electron hopping between Mn ions (that is, the electronic bandwidth). But these effects cannot satisfactorily explain the dependence of magnetoresistance on T C. Here we demonstrate, using electron microscopy data, that the prototypical (La,Pr,Ca)MnO3 system is electronically phase-separated into a sub-micrometre-scale mixture of insulating regions (with a particular type of charge-ordering) and metallic, ferromagnetic domains. We find that the colossal magnetoresistive effect in low-T C systems can be explained by percolative transport through the ferromagnetic domains; this depends sensitively on the relative spin orientation of adjacent ferromagnetic domains which can be controlled by applied magnetic fields.
Nature | 2004
Armelle Lengronne; Yuki Katou; Saori Mori; Shihori Yokobayashi; Gavin Kelly; Takehiko Itoh; Yoshinori Watanabe; Katsuhiko Shirahige; Frank Uhlmann
Sister chromatids, the products of eukaryotic DNA replication, are held together by the chromosomal cohesin complex after their synthesis. This allows the spindle in mitosis to recognize pairs of replication products for segregation into opposite directions. Cohesin forms large protein rings that may bind DNA strands by encircling them, but the characterization of cohesin binding to chromosomes in vivo has remained vague. We have performed high resolution analysis of cohesin association along budding yeast chromosomes III–VI. Cohesin localizes almost exclusively between genes that are transcribed in converging directions. We find that active transcription positions cohesin at these sites, not the underlying DNA sequence. Cohesin is initially loaded onto chromosomes at separate places, marked by the Scc2/Scc4 cohesin loading complex, from where it appears to slide to its more permanent locations. But even after sister chromatid cohesion is established, changes in transcription lead to repositioning of cohesin. Thus the sites of cohesin binding and therefore probably sister chromatid cohesion, a key architectural feature of mitotic chromosomes, display surprising flexibility. Cohesin localization to places of convergent transcription is conserved in fission yeast, suggesting that it is a common feature of eukaryotic chromosomes.
Nature | 2006
Christian G. Riedel; Vittorio L. Katis; Yuki Katou; Saori Mori; Takehiko Itoh; Wolfgang Helmhart; Marta Galova; Mark Petronczki; Juraj Gregan; Bulent Cetin; Ingrid Mudrak; Egon Ogris; Karl Mechtler; Laurence Pelletier; Frank Buchholz; Katsuhiko Shirahige; Kim Nasmyth
Segregation of homologous maternal and paternal centromeres to opposite poles during meiosis I depends on post-replicative crossing over between homologous non-sister chromatids, which creates chiasmata and therefore bivalent chromosomes. Destruction of sister chromatid cohesion along chromosome arms due to proteolytic cleavage of cohesins Rec8 subunit by separase resolves chiasmata and thereby triggers the first meiotic division. This produces univalent chromosomes, the chromatids of which are held together by centromeric cohesin that has been protected from separase by shugoshin (Sgo1/MEI-S332) proteins. Here we show in both fission and budding yeast that Sgo1 recruits to centromeres a specific form of protein phosphatase 2A (PP2A). Its inactivation causes loss of centromeric cohesin at anaphase I and random segregation of sister centromeres at the second meiotic division. Artificial recruitment of PP2A to chromosome arms prevents Rec8 phosphorylation and hinders resolution of chiasmata. Our data are consistent with the notion that efficient cleavage of Rec8 requires phosphorylation of cohesin and that this is blocked by PP2A at meiosis I centromeres.
Cell | 2006
Mark Petronczki; Joao Matos; Saori Mori; Juraj Gregan; Aliona Bogdanova; Martin Schwickart; Karl Mechtler; Katsuhiko Shirahige; Wolfgang Zachariae; Kim Nasmyth
In meiosis, a single round of DNA replication is followed by two consecutive rounds of chromosome segregation, called meiosis I and II. Disjunction of maternal from paternal centromeres during meiosis I depends on the attachment of sister kinetochores to microtubules emanating from the same pole. In budding yeast, monopolar attachment requires recruitment to kinetochores of the monopolin complex. How monopolin promotes monopolar attachment was unclear, as its subunits are poorly conserved and lack similarities to proteins with known functions. We show here that the monopolin subunit Mam1 binds tightly to Hrr25, a highly conserved casein kinase 1 delta/epsilon (CK1delta/epsilon), and recruits it to meiosis I centromeres. Hrr25 kinase activity and Mam1 binding are both essential for monopolar attachment. Since CK1delta/epsilon activity is important for accurate chromosome segregation during meiosis I also in fission yeast, phosphorylation of kinetochore proteins by CK1delta/epsilon might be an evolutionary conserved process required for monopolar attachment.
Molecular Biology of the Cell | 2009
Kazuto Kugou; Tomoyuki Fukuda; Shintaro Yamada; Masaru Ito; Hiroyuki Sasanuma; Saori Mori; Yuki Katou; Takehiko Itoh; Kouji Matsumoto; Takehiko Shibata; Katsuhiko Shirahige; Kunihiro Ohta
Spo11-mediated DNA double-strand breaks (DSBs) that initiate meiotic recombination are temporally and spatially controlled. The meiotic cohesin Rec8 has been implicated in regulating DSB formation, but little is known about the features of their interplay. To elucidate this point, we investigated the genome-wide localization of Spo11 in budding yeast during early meiosis by chromatin immunoprecipitation using high-density tiling arrays. We found that Spo11 is dynamically localized to meiotic chromosomes. Spo11 initially accumulated around centromeres and thereafter localized to arm regions as premeiotic S phase proceeded. During this stage, a substantial proportion of Spo11 bound to Rec8 binding sites. Eventually, some of Spo11 further bound to both DSB and Rec8 sites. We also showed that such a change in a distribution of Spo11 is affected by hydroxyurea treatment. Interestingly, deletion of REC8 influences the localization of Spo11 to centromeres and in some of the intervals of the chromosomal arms. Thus, we observed a lack of DSB formation in a region-specific manner. These observations suggest that Rec8 would prearrange the distribution of Spo11 along chromosomes and will provide clues to understanding temporal and spatial regulation of DSB formation.
Current Biology | 2004
Vittorio L. Katis; Joao Matos; Saori Mori; Katsuhiko Shirahige; Wolfgang Zachariae; Kim Nasmyth
BACKGROUND Cells undergoing meiosis perform two consecutive divisions after a single round of DNA replication. During the first meiotic division, homologous chromosomes segregate to opposite poles. This is achieved by (1) the pairing of maternal and paternal chromosomes via recombination producing chiasmata, (2) coorientation of homologous chromosomes such that sister chromatids attach to the same spindle pole, and (3) resolution of chiasmata by proteolytic cleavage by separase of the meiotic-specific cohesin Rec8 along chromosome arms. Crucially, cohesin at centromeres is retained to allow sister centromeres to biorient at the second division. Little is known about how these meiosis I-specific events are regulated. RESULTS Here, we show that Spo13, a centromere-associated protein produced exclusively during meiosis I, is required to prevent sister kinetochore biorientation by facilitating the recruitment of the monopolin complex to kinetochores. Spo13 is also required for the reaccumulation of securin, the persistence of centromeric cohesin during meiosis II, and the maintenance of a metaphase I arrest induced by downregulation of the APC/C activator CDC20. CONCLUSION Spo13 is a key regulator of several meiosis I events. The presence of Spo13 at centromere-surrounding regions is consistent with the notion that it plays a direct role in both monopolin recruitment to centromeres during meiosis I and maintenance of centromeric cohesion between the meiotic divisions. Spo13 may also limit separase activity after the first division by ensuring securin reaccumulation and, in doing so, preventing precocious removal from chromatin of centromeric cohesin.
Journal of Biological Chemistry | 2007
Saori Mori; Katsuhiko Shirahige
We have determined the activity of all ARSs on the Saccharomyces cerevisiae chromosome VI as chromosomal replication origins in premeiotic S-phase by neutral/neutral two-dimensional gel electrophoresis. The comparison of origin activity of each origin in mitotic and premeiotic S-phase showed that one of the most efficient origins in mitotic S-phase, ARS605, was completely inhibited in premeiotic S-phase. ARS605 is located within the open reading frame of MSH4 gene that is transcribed specifically during an early stage of meiosis. Systematic analysis of relationships between MSH4 transcription and ARS605 origin activity revealed that transcription of MSH4 inhibited the ARS605 origin activity by removing origin recognition complex from ARS605. Deletion of UME6, a transcription factor responsible for repressing MSH4 during mitotic S-phase, resulted in inactivation of ARS605 in mitosis. Our finding is the first demonstration that the transcriptional regulation on the replication origin activity is related to changes in cell physiology. These results may provide insights into changes in replication origin activity in embryonic cell cycle during early developmental stages.
PHYSICS IN LOCAL LATTICE DISTORTIONS: Fundamentals and Novel Concepts; LLD2K | 2001
Saori Mori; Naoki Yamamoto; T. Katsufuji
We investigated thoroughly change in the microstructure related to the charge ordered (CO) state in half-doped manganites such as Pr0.5Ca0.5MnO3 and Nd0.5Ca0.5MnO3 by the transmission electron microscopy. We found the incommensurate (IC) to commensurate (C) structural phase transition in Pr0.5Ca0.5MnO3 and Nd0.5Ca0.5MnO3. The magnitude of the wave vector characterizing the CO state changes with respect to the temperature. Real space images taken by using the superlattice spots due to the CO state revealed that the IC structure is characterized as the regular arrangement of the discommensurations with the phase slip of π along the [100] direction. Furthermore, the IC CO state is present as the microdomains with the size of 20–30 nm.
Physical Review B | 2001
T. Katsufuji; Saori Mori; M. Masaki; Yutaka Moritomo; Naoki Yamamoto; H. Takagi
Physical Review B | 1999
Saori Mori; T. Katsufuji; Naoki Yamamoto; C. H. Chen; S.-W. Cheong