Sapna Pradyuman Patel
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sapna Pradyuman Patel.
Science | 2018
V. Gopalakrishnan; C. N. Spencer; Luigi Nezi; Alexandre Reuben; Miles C. Andrews; T. V. Karpinets; Peter A. Prieto; D. Vicente; K. Hoffman; Spencer C. Wei; Alexandria P. Cogdill; Li Zhao; Courtney W. Hudgens; D. S. Hutchinson; T. Manzo; M. Petaccia de Macedo; Tiziana Cotechini; T. Kumar; Wei Shen Chen; Sangeetha M. Reddy; R. Szczepaniak Sloane; J. Galloway-Pena; Hong Jiang; Pei Ling Chen; E. J. Shpall; K. Rezvani; A. M. Alousi; R. F. Chemaly; S. Shelburne; Luis Vence
Good bacteria help fight cancer Resident gut bacteria can affect patient responses to cancer immunotherapy (see the Perspective by Jobin). Routy et al. show that antibiotic consumption is associated with poor response to immunotherapeutic PD-1 blockade. They profiled samples from patients with lung and kidney cancers and found that nonresponding patients had low levels of the bacterium Akkermansia muciniphila. Oral supplementation of the bacteria to antibiotic-treated mice restored the response to immunotherapy. Matson et al. and Gopalakrishnan et al. studied melanoma patients receiving PD-1 blockade and found a greater abundance of “good” bacteria in the guts of responding patients. Nonresponders had an imbalance in gut flora composition, which correlated with impaired immune cell activity. Thus, maintaining healthy gut flora could help patients combat cancer. Science, this issue p. 91, p. 104, p. 97; see also p. 32 Gut bacteria influence patient response to cancer therapy. Preclinical mouse models suggest that the gut microbiome modulates tumor response to checkpoint blockade immunotherapy; however, this has not been well-characterized in human cancer patients. Here we examined the oral and gut microbiome of melanoma patients undergoing anti–programmed cell death 1 protein (PD-1) immunotherapy (n = 112). Significant differences were observed in the diversity and composition of the patient gut microbiome of responders versus nonresponders. Analysis of patient fecal microbiome samples (n = 43, 30 responders, 13 nonresponders) showed significantly higher alpha diversity (P < 0.01) and relative abundance of bacteria of the Ruminococcaceae family (P < 0.01) in responding patients. Metagenomic studies revealed functional differences in gut bacteria in responders, including enrichment of anabolic pathways. Immune profiling suggested enhanced systemic and antitumor immunity in responding patients with a favorable gut microbiome as well as in germ-free mice receiving fecal transplants from responding patients. Together, these data have important implications for the treatment of melanoma patients with immune checkpoint inhibitors.
Clinical Cancer Research | 2012
Laszlo Radvanyi; Chantale Bernatchez; Minying Zhang; Patricia S. Fox; Priscilla Miller; Jessica Chacon; R Wu; Gregory Lizée; Sandy Mahoney; Gladys Alvarado; Michelle R. Glass; Valen E. Johnson; John McMannis; Elizabeth J. Shpall; Victor G. Prieto; Nicholas E. Papadopoulos; Kevin B. Kim; Jade Homsi; Agop Y. Bedikian; Wen-Jen Hwu; Sapna Pradyuman Patel; Merrick I. Ross; Jeffrey E. Lee; Jeffrey E. Gershenwald; Anthony Lucci; Richard E. Royal; Janice N. Cormier; Michael A. Davies; Rahmatu Mansaray; Orenthial J. Fulbright
Purpose: Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) is a promising treatment for metastatic melanoma unresponsive to conventional therapies. We report here on the results of an ongoing phase II clinical trial testing the efficacy of ACT using TIL in patients with metastatic melanoma and the association of specific patient clinical characteristics and the phenotypic attributes of the infused TIL with clinical response. Experimental Design: Altogether, 31 transiently lymphodepleted patients were treated with their expanded TIL, followed by two cycles of high-dose interleukin (IL)-2 therapy. The effects of patient clinical features and the phenotypes of the T cells infused on the clinical response were determined. Results: Overall, 15 of 31 (48.4%) patients had an objective clinical response using immune-related response criteria (irRC) with 2 patients (6.5%) having a complete response. Progression-free survival of more than 12 months was observed for 9 of 15 (60%) of the responding patients. Factors significantly associated with the objective tumor regression included a higher number of TIL infused, a higher proportion of CD8+ T cells in the infusion product, a more differentiated effector phenotype of the CD8+ population, and a higher frequency of CD8+ T cells coexpressing the negative costimulation molecule “B- and T-lymphocyte attenuator” (BTLA). No significant difference in the telomere lengths of TIL between responders and nonresponders was identified. Conclusion: These results indicate that the immunotherapy with expanded autologous TIL is capable of achieving durable clinical responses in patients with metastatic melanoma and that CD8+ T cells in the infused TIL, particularly differentiated effectors cells and cells expressing BTLA, are associated with tumor regression. Clin Cancer Res; 18(24); 6758–70. ©2012 AACR.
Cancer Discovery | 2016
Pei Ling Chen; Whijae Roh; Alexandre Reuben; Zachary A. Cooper; Christine N. Spencer; Peter A. Prieto; John P. Miller; Roland L. Bassett; Vancheswaran Gopalakrishnan; Khalida Wani; Mariana Petaccia de Macedo; Jacob Austin-Breneman; Hong Jiang; Qing Chang; Sangeetha M. Reddy; Wei Shen Chen; Michael T. Tetzlaff; R. Broaddus; Michael A. Davies; Jeffrey E. Gershenwald; Lauren E. Haydu; Alexander J. Lazar; Sapna Pradyuman Patel; Patrick Hwu; Wen-Jen Hwu; Adi Diab; Isabella C. Glitza; Scott E. Woodman; Luis Vence; Ignacio I. Wistuba
UNLABELLED Immune checkpoint blockade represents a major breakthrough in cancer therapy; however, responses are not universal. Genomic and immune features in pretreatment tumor biopsies have been reported to correlate with response in patients with melanoma and other cancers, but robust biomarkers have not been identified. We studied a cohort of patients with metastatic melanoma initially treated with cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) blockade (n = 53) followed by programmed death-1 (PD-1) blockade at progression (n = 46), and analyzed immune signatures in longitudinal tissue samples collected at multiple time points during therapy. In this study, we demonstrate that adaptive immune signatures in tumor biopsy samples obtained early during the course of treatment are highly predictive of response to immune checkpoint blockade and also demonstrate differential effects on the tumor microenvironment induced by CTLA4 and PD-1 blockade. Importantly, potential mechanisms of therapeutic resistance to immune checkpoint blockade were also identified. SIGNIFICANCE These studies demonstrate that adaptive immune signatures in early on-treatment tumor biopsies are predictive of response to checkpoint blockade and yield insight into mechanisms of therapeutic resistance. These concepts have far-reaching implications in this age of precision medicine and should be explored in immune checkpoint blockade treatment across cancer types. Cancer Discov; 6(8); 827-37. ©2016 AACR.See related commentary by Teng et al., p. 818This article is highlighted in the In This Issue feature, p. 803.
Science Translational Medicine | 2017
Whijae Roh; Pei Ling Chen; Alexandre Reuben; Christine N. Spencer; Peter A. Prieto; John P. Miller; Vancheswaran Gopalakrishnan; Feng Wang; Zachary A. Cooper; Sangeetha M. Reddy; Curtis Gumbs; Latasha Little; Qing Chang; Wei Shen Chen; Khalida Wani; Mariana Petaccia de Macedo; Eveline Chen; Jacob Austin-Breneman; Hong Jiang; Jason Roszik; Michael T. Tetzlaff; Michael A. Davies; Jeffrey E. Gershenwald; Hussein Abdul-Hassan Tawbi; Alexander J. Lazar; Patrick Hwu; Wen-Jen Hwu; Adi Diab; Isabella C. Glitza; Sapna Pradyuman Patel
Profiling of melanoma patients treated with checkpoint blockade reveals TCR clonality and copy number loss as correlates of therapeutic response. Checking on checkpoint inhibitors Immune checkpoint blockade has greatly improved the success of treatment in melanoma and other tumor types, but it is expensive and does not work for all patients. To optimize the likelihood of therapeutic success and reduce the risks and expense of unnecessary treatment, it would be helpful to find biomarkers that can predict treatment response. Roh et al. studied patients treated with sequential checkpoint inhibitors targeting CTLA-4 and then PD-1. In these patients, the authors discovered that a more clonal T cell population specifically correlates with response to PD-1 blockade, but not CTLA-4, which may help identify the best candidates for this treatment. In addition, increased frequency of gene copy number loss was correlated with decreased responsiveness to either therapy. Immune checkpoint blockade produces clinical benefit in many patients. However, better biomarkers of response are still needed, and mechanisms of resistance remain incompletely understood. To address this, we recently studied a cohort of melanoma patients treated with sequential checkpoint blockade against cytotoxic T lymphocyte antigen–4 (CTLA-4) followed by programmed death receptor–1 (PD-1) and identified immune markers of response and resistance. Building on these studies, we performed deep molecular profiling including T cell receptor sequencing and whole-exome sequencing within the same cohort and demonstrated that a more clonal T cell repertoire was predictive of response to PD-1 but not CTLA-4 blockade. Analysis of CNAs identified a higher burden of copy number loss in nonresponders to CTLA-4 and PD-1 blockade and found that it was associated with decreased expression of genes in immune-related pathways. The effect of mutational load and burden of copy number loss on response was nonredundant, suggesting the potential utility of a combinatorial biomarker to optimize patient care with checkpoint blockade therapy.
Cancer | 2013
Sapna Pradyuman Patel; Alexander J. Lazar; Nicholas E. Papadopoulos; Ping Liu; Jeffrey R. Infante; Michelle R. Glass; Carol Vaughn; Patricia LoRusso; Roger B. Cohen; Michael A. Davies; Kevin B. Kim
The high prevalence of v‐raf murine sarcoma viral oncogene homolog B1 (BRAF) and neuroblastoma v‐ras oncogene homolog (NRAS) mutations in melanoma provides a strong rationale to test the clinical efficacy of mitogen‐activated protein kinase kinase (MEK) inhibition in this disease. The authors hypothesized that the presence of BRAF or NRAS mutations would correlate with clinical benefit among patients who received treatment with combination regimens that included the MEK inhibitor selumetinib.
Expert Opinion on Drug Safety | 2009
Van Anh Trinh; Sapna Pradyuman Patel; Wen-Jen Hwu
Background: Temozolomide (TMZ) has demonstrated clinical antitumor activity. In the US and the EU, TMZ is licensed for the treatment of glioblastoma multiforme concurrently with radiation followed by a maintenance treatment, and for refractory anaplastic astrocytoma or glioblastoma multiforme. TMZ is also approved for metastatic melanoma in > 20 countries worldwide. Objectives: To ascertain the safety profile of TMZ. Methods: Synthesis of evidence from published clinical trials and the investigators brochure of the manufacture. Conclusion: For a cytotoxic cancer-treatment agent, TMZ has an acceptable safety profile. Lymphopenia is common in patients treated with all doses and schedules of TMZ. All patients receiving TMZ should be observed for lymphopenia and potential opportunistic infections, particularly when it is combined with other immune suppressive therapies.
Cancer | 2016
Chandrani Chattopadhyay; Dae Won Kim; Dan S. Gombos; Junna Oba; Yong Qin; Michelle D. Williams; Bita Esmaeli; Elizabeth A. Grimm; Jennifer A. Wargo; Scott E. Woodman; Sapna Pradyuman Patel
Melanomas of the choroid, ciliary body, and iris of the eye are collectively known as uveal melanomas. These cancers represent 5% of all melanoma diagnoses in the United States, and their age‐adjusted risk is 5 per 1 million population. These less frequent melanomas are dissimilar to their more common cutaneous melanoma relative, with differing risk factors, primary treatment, anatomic spread, molecular changes, and responses to systemic therapy. Once uveal melanoma becomes metastatic, therapy options are limited and are often extrapolated from cutaneous melanoma therapies despite the routine exclusion of patients with uveal melanoma from clinical trials. Clinical trials directed at uveal melanoma have been completed or are in progress, and data from these well designed investigations will help guide future directions in this orphan disease. Cancer 2016;122:2299–2312.
Melanoma Research | 2012
Gladys Alvarado; Rahat Noor; Roland L. Bassett; Nicholas E. Papadopoulos; Kevin B. Kim; Wen-Jen Hwu; Agop Y. Bedikian; Sapna Pradyuman Patel; Patrick Hwu; Michael A. Davies
Venous thromboembolism (VTE) is a frequent complication in melanoma patients with brain metastases (BM). The management of these patients is challenging because of the high risk of intracranial hemorrhage (ICH) and the limited data available on the safety of anticoagulation in this scenario. We reviewed the treatments and outcomes among melanoma patients with BM and VTE at our institution to determine the safety of anticoagulation in these patients. A retrospective chart review was performed to identify melanoma patients with BM who were diagnosed with VTE. The clinical characteristics of the BM and the VTE, the treatments given for VTE, subsequent ICH, and overall survival (OS) were determined. The characteristics and outcomes were compared between patients who received systemic anticoagulation and those who did not. A total of 74 evaluable melanoma patients with BM and VTE were identified. Fifty-seven (77%) patients received systemic anticoagulation. There was no significant difference in the number (P=0.40) or the maximum diameter (P=0.55) of brain metastasis between the patients who received anticoagulation and those who did not. Two (4%) patients who received anticoagulation developed ICH, which was not statistically different from the patients who did not receive anticoagulation (0%, P=1.00). There was a trend toward longer OS from VTE among patients who received systemic anticoagulation (median OS: 4.2 vs. 1.2 months, P=0.06). Anticoagulation for VTE did not significantly increase the risk of ICH or decrease OS in patients with melanoma BM. These data support the safety of systemic anticoagulation for VTE in these patients.
Drug Design Development and Therapy | 2011
Sapna Pradyuman Patel; Scott E. Woodman
Melanoma is an immunogenic cancer. However, the ability of the immune system to eradicate melanoma tumors is affected by intrinsic negative regulatory mechanisms. Multiple immune-modulatory therapies are currently being developed to optimize the immune response to melanoma tumors. Two recent Phase III studies using the monoclonal antibody ipilimumab, which targets the cytotoxic T-lymphocyte antigen (CTLA-4), a negative regulator of T-cell activation, have demonstrated improvement in overall survival of metastatic melanoma patients. This review highlights the clinical trial data that supports the efficacy of ipilimumab, the immune-related response criteria used to evaluate clinical response, and side-effect profile associated with ipilimumab treatment.
OncoImmunology | 2016
Zachary A. Cooper; Alexandre Reuben; Christine N. Spencer; Peter A. Prieto; Jacob Austin-Breneman; Hong Jiang; Cara Haymaker; Vancheswaran Gopalakrishnan; Michael T. Tetzlaff; Dennie T. Frederick; Ryan J. Sullivan; Rodabe N. Amaria; Sapna Pradyuman Patel; Patrick Hwu; Scott E. Woodman; Isabella C. Glitza; Adi Diab; Luis Vence; Jaime Rodriguez-Canales; Edwin R. Parra; Ignacio I. Wistuba; Lisa M. Coussens; Arlene H. Sharpe; Keith T. Flaherty; Jeffrey E. Gershenwald; Lynda Chin; Michael A. Davies; Karen Clise-Dwyer; James P. Allison; Padmanee Sharma
ABSTRACT We have made major advances in the treatment of melanoma through the use of targeted therapy and immune checkpoint blockade; however, clinicians are posed with therapeutic dilemmas regarding timing and sequence of therapy. There is a growing appreciation of the impact of antitumor immune responses to these therapies, and we performed studies to test the hypothesis that clinical patterns and immune infiltrates differ at progression on these treatments. We observed rapid clinical progression kinetics in patients on targeted therapy compared to immune checkpoint blockade. To gain insight into possible immune mechanisms behind these differences, we performed deep immune profiling in tumors of patients on therapy. We demonstrated low CD8+ T-cell infiltrate on targeted therapy and high CD8+ T-cell infiltrate on immune checkpoint blockade at clinical progression. These data have important implications, and suggest that antitumor immune responses should be assessed when considering therapeutic options for patients with melanoma.