Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wen-Jen Hwu is active.

Publication


Featured researches published by Wen-Jen Hwu.


The New England Journal of Medicine | 2012

Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer

Julie R. Brahmer; Scott S. Tykodi; Laura Q. Chow; Wen-Jen Hwu; Suzanne L. Topalian; Patrick Hwu; Charles G. Drake; Luis H. Camacho; John Kauh; Kunle Odunsi; Henry C. Pitot; Omid Hamid; Shailender Bhatia; Renato Martins; Keith D. Eaton; Shuming Chen; Theresa M. Salay; Suresh Alaparthy; Joseph F. Grosso; Alan J. Korman; Susan M. Parker; Shruti Agrawal; Stacie M. Goldberg; Drew M. Pardoll; Ashok Kumar Gupta; Jon M. Wigginton

BACKGROUND Programmed death 1 (PD-1) protein, a T-cell coinhibitory receptor, and one of its ligands, PD-L1, play a pivotal role in the ability of tumor cells to evade the hosts immune system. Blockade of interactions between PD-1 and PD-L1 enhances immune function in vitro and mediates antitumor activity in preclinical models. METHODS In this multicenter phase 1 trial, we administered intravenous anti-PD-L1 antibody (at escalating doses ranging from 0.3 to 10 mg per kilogram of body weight) to patients with selected advanced cancers. Anti-PD-L1 antibody was administered every 14 days in 6-week cycles for up to 16 cycles or until the patient had a complete response or confirmed disease progression. RESULTS As of February 24, 2012, a total of 207 patients--75 with non-small-cell lung cancer, 55 with melanoma, 18 with colorectal cancer, 17 with renal-cell cancer, 17 with ovarian cancer, 14 with pancreatic cancer, 7 with gastric cancer, and 4 with breast cancer--had received anti-PD-L1 antibody. The median duration of therapy was 12 weeks (range, 2 to 111). Grade 3 or 4 toxic effects that investigators considered to be related to treatment occurred in 9% of patients. Among patients with a response that could be evaluated, an objective response (a complete or partial response) was observed in 9 of 52 patients with melanoma, 2 of 17 with renal-cell cancer, 5 of 49 with non-small-cell lung cancer, and 1 of 17 with ovarian cancer. Responses lasted for 1 year or more in 8 of 16 patients with at least 1 year of follow-up. CONCLUSIONS Antibody-mediated blockade of PD-L1 induced durable tumor regression (objective response rate of 6 to 17%) and prolonged stabilization of disease (rates of 12 to 41% at 24 weeks) in patients with advanced cancers, including non-small-cell lung cancer, melanoma, and renal-cell cancer. (Funded by Bristol-Myers Squibb and others; ClinicalTrials.gov number, NCT00729664.).


The New England Journal of Medicine | 2013

Safety and Tumor Responses with Lambrolizumab (Anti–PD-1) in Melanoma

Omid Hamid; Caroline Robert; Adil Daud; F. Stephen Hodi; Wen-Jen Hwu; Richard F. Kefford; Jedd D. Wolchok; Peter Hersey; Richard W. Joseph; Jeffrey S. Weber; Roxana Stefania Dronca; Tara C. Gangadhar; Amita Patnaik; Hassane M. Zarour; Anthony M. Joshua; Kevin Gergich; Jeroen Elassaiss-Schaap; Alain Patrick Algazi; C. Mateus; Peter Boasberg; Paul C. Tumeh; Bartosz Chmielowski; Scot Ebbinghaus; Xiaoyun Nicole Li; S. Peter Kang; Antoni Ribas

BACKGROUND The programmed death 1 (PD-1) receptor is a negative regulator of T-cell effector mechanisms that limits immune responses against cancer. We tested the anti-PD-1 antibody lambrolizumab (previously known as MK-3475) in patients with advanced melanoma. METHODS We administered lambrolizumab intravenously at a dose of 10 mg per kilogram of body weight every 2 or 3 weeks or 2 mg per kilogram every 3 weeks in patients with advanced melanoma, both those who had received prior treatment with the immune checkpoint inhibitor ipilimumab and those who had not. Tumor responses were assessed every 12 weeks. RESULTS A total of 135 patients with advanced melanoma were treated. Common adverse events attributed to treatment were fatigue, rash, pruritus, and diarrhea; most of the adverse events were low grade. The confirmed response rate across all dose cohorts, evaluated by central radiologic review according to the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, was 38% (95% confidence interval [CI], 25 to 44), with the highest confirmed response rate observed in the cohort that received 10 mg per kilogram every 2 weeks (52%; 95% CI, 38 to 66). The response rate did not differ significantly between patients who had received prior ipilimumab treatment and those who had not (confirmed response rate, 38% [95% CI, 23 to 55] and 37% [95% CI, 26 to 49], respectively). Responses were durable in the majority of patients (median follow-up, 11 months among patients who had a response); 81% of the patients who had a response (42 of 52) were still receiving treatment at the time of analysis in March 2013. The overall median progression-free survival among the 135 patients was longer than 7 months. CONCLUSIONS In patients with advanced melanoma, including those who had had disease progression while they had been receiving ipilimumab, treatment with lambrolizumab resulted in a high rate of sustained tumor regression, with mainly grade 1 or 2 toxic effects. (Funded by Merck Sharp and Dohme; ClinicalTrials.gov number, NCT01295827.).


The Lancet | 2014

Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial

Caroline Robert; Antoni Ribas; Jedd D. Wolchok; F. Stephen Hodi; Omid Hamid; Richard F. Kefford; Jeffrey S. Weber; Anthony M. Joshua; Wen-Jen Hwu; Tara C. Gangadhar; Amita Patnaik; Roxana Stefania Dronca; Hassane M. Zarour; Richard W. Joseph; Peter Boasberg; Bartosz Chmielowski; C. Mateus; Michael A. Postow; Kevin Gergich; Jeroen Elassaiss-Schaap; Xiaoyun Nicole Li; Robert Iannone; Scot Ebbinghaus; S. Peter Kang; Adil Daud

BACKGROUND The anti-programmed-death-receptor-1 (PD-1) antibody pembrolizumab has shown potent antitumour activity at different doses and schedules in patients with melanoma. We compared the efficacy and safety of pembrolizumab at doses of 2 mg/kg and 10 mg/kg every 3 weeks in patients with ipilimumab-refractory advanced melanoma. METHODS In an open-label, international, multicentre expansion cohort of a phase 1 trial, patients (aged ≥18 years) with advanced melanoma whose disease had progressed after at least two ipilimumab doses were randomly assigned with a computer-generated allocation schedule (1:1 final ratio) to intravenous pembrolizumab at 2 mg/kg every 3 weeks or 10 mg/kg every 3 weeks until disease progression, intolerable toxicity, or consent withdrawal. Primary endpoint was overall response rate (ORR) assessed with the Response Evaluation Criteria In Solid Tumors (RECIST, version 1.1) by independent central review. Analysis was done on the full-analysis set (all treated patients with measurable disease at baseline). This study is registered with ClinicalTrials.gov, number NCT01295827. FINDINGS 173 patients received pembrolizumab 2 mg/kg (n=89) or 10 mg/kg (n=84). Median follow-up duration was 8 months. ORR was 26% at both doses--21 of 81 patients in the 2 mg/kg group and 20 of 76 in the 10 mg/kg group (difference 0%, 95% CI -14 to 13; p=0·96). Treatment was well tolerated, with similar safety profiles in the 2 mg/kg and 10 mg/kg groups and no drug-related deaths. The most common drug-related adverse events of any grade in the 2 mg/kg and 10 mg/kg groups were fatigue (29 [33%] vs 31 [37%]), pruritus (23 [26%] vs 16 [19%]), and rash (16 [18%] vs 15 [18%]). Grade 3 fatigue, reported in five (3%) patients in the 2 mg/kg pembrolizumab group, was the only drug-related grade 3 to 4 adverse event reported in more than one patient. INTERPRETATION The results suggest that pembrolizumab at a dose of 2 mg/kg or 10 mg/kg every 3 weeks might be an effective treatment in patients for whom there are few effective treatment options. FUNDING Merck Sharp and Dohme.


JAMA | 2016

Association of Pembrolizumab With Tumor Response and Survival Among Patients With Advanced Melanoma.

Antoni Ribas; Omid Hamid; Adil Daud; F. Stephen Hodi; Jedd D. Wolchok; Richard F. Kefford; Anthony M. Joshua; Amita Patnaik; Wen-Jen Hwu; Jeffrey S. Weber; Tara C. Gangadhar; Peter Hersey; Roxana Stefania Dronca; Richard W. Joseph; Hassane M. Zarour; Bartosz Chmielowski; Donald P. Lawrence; Alain Patrick Algazi; Naiyer A. Rizvi; Brianna Hoffner; C. Mateus; Kevin Gergich; Jill A. Lindia; Maxine Giannotti; Xiaoyun Nicole Li; Scot Ebbinghaus; S. Peter Kang; Caroline Robert

IMPORTANCE The programmed death 1 (PD-1) pathway limits immune responses to melanoma and can be blocked with the humanized anti-PD-1 monoclonal antibody pembrolizumab. OBJECTIVE To characterize the association of pembrolizumab with tumor response and overall survival among patients with advanced melanoma. DESIGN, SETTINGS, AND PARTICIPANTS Open-label, multicohort, phase 1b clinical trials (enrollment, December 2011-September 2013). Median duration of follow-up was 21 months. The study was performed in academic medical centers in Australia, Canada, France, and the United States. Eligible patients were aged 18 years and older and had advanced or metastatic melanoma. Data were pooled from 655 enrolled patients (135 from a nonrandomized cohort [n = 87 ipilimumab naive; n = 48 ipilimumab treated] and 520 from randomized cohorts [n = 226 ipilimumab naive; n = 294 ipilimumab treated]). Cutoff dates were April 18, 2014, for safety analyses and October 18, 2014, for efficacy analyses. EXPOSURES Pembrolizumab 10 mg/kg every 2 weeks, 10 mg/kg every 3 weeks, or 2 mg/kg every 3 weeks continued until disease progression, intolerable toxicity, or investigator decision. MAIN OUTCOMES AND MEASURES The primary end point was confirmed objective response rate (best overall response of complete response or partial response) in patients with measurable disease at baseline per independent central review. Secondary end points included toxicity, duration of response, progression-free survival, and overall survival. RESULTS Among the 655 patients (median [range] age, 61 [18-94] years; 405 [62%] men), 581 had measurable disease at baseline. An objective response was reported in 194 of 581 patients (33% [95% CI, 30%-37%]) and in 60 of 133 treatment-naive patients (45% [95% CI, 36% to 54%]). Overall, 74% (152/205) of responses were ongoing at the time of data cutoff; 44% (90/205) of patients had response duration for at least 1 year and 79% (162/205) had response duration for at least 6 months. Twelve-month progression-free survival rates were 35% (95% CI, 31%-39%) in the total population and 52% (95% CI, 43%-60%) among treatment-naive patients. Median overall survival in the total population was 23 months (95% CI, 20-29) with a 12-month survival rate of 66% (95% CI, 62%-69%) and a 24-month survival rate of 49% (95% CI, 44%-53%). In treatment-naive patients, median overall survival was 31 months (95% CI, 24 to not reached) with a 12-month survival rate of 73% (95% CI, 65%-79%) and a 24-month survival rate of 60% (95% CI, 51%-68%). Ninety-two of 655 patients (14%) experienced at least 1 treatment-related grade 3 or 4 adverse event (AE) and 27 of 655 (4%) patients discontinued treatment because of a treatment-related AE. Treatment-related serious AEs were reported in 59 patients (9%). There were no drug-related deaths. CONCLUSIONS AND RELEVANCE Among patients with advanced melanoma, pembrolizumab administration was associated with an overall objective response rate of 33%, 12-month progression-free survival rate of 35%, and median overall survival of 23 months; grade 3 or 4 treatment-related AEs occurred in 14%. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01295827.


Journal of Clinical Oncology | 2016

Evaluation of Immune-Related Response Criteria and RECIST v1.1 in Patients With Advanced Melanoma Treated With Pembrolizumab

F. Stephen Hodi; Wen-Jen Hwu; Richard F. Kefford; Jeffrey S. Weber; Adil Daud; Omid Hamid; Amita Patnaik; Antoni Ribas; Caroline Robert; Tara C. Gangadhar; Anthony M. Joshua; Peter Hersey; Roxana Stefania Dronca; Richard W. Joseph; Darcy A. Hille; Dahai Xue; Xiaoyun Nicole Li; S. Peter Kang; Scot Ebbinghaus; Andrea Perrone; Jedd D. Wolchok

PURPOSE We evaluated atypical response patterns and the relationship between overall survival and best overall response measured per immune-related response criteria (irRC) and Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST v1.1) in patients with advanced melanoma treated with pembrolizumab in the phase Ib KEYNOTE-001 study (clinical trial information: NCT01295827). PATIENTS AND METHODS Patients received pembrolizumab 2 or 10 mg/kg every 2 weeks or every 3 weeks. Atypical responses were identified by using centrally assessed irRC data in patients with ≥ 28 weeks of imaging. Pseudoprogression was defined as ≥ 25% increase in tumor burden at week 12 (early) or any assessment after week 12 (delayed) that was not confirmed as progressive disease at next assessment. Response was assessed centrally per irRC and RECIST v1.1. RESULTS Of the 655 patients with melanoma enrolled, 327 had ≥ 28 weeks of imaging follow-up. Twenty-four (7%) of these 327 patients had atypical responses (15 [5%] with early pseudoprogression and nine [3%] with delayed pseudoprogression). Of the 592 patients who survived ≥ 12 weeks, 84 (14%) experienced progressive disease per RECIST v1.1 but nonprogressive disease per irRC. Two-year overall survival rates were 77.6% in patients with nonprogressive disease per both criteria (n = 331), 37.5% in patients with progressive disease per RECIST v1.1 but nonprogressive disease per irRC (n = 84), and 17.3% in patients with progressive disease per both criteria (n = 177). CONCLUSION Atypical responses were observed in patients with melanoma treated with pembrolizumab. Based on survival analysis, conventional RECIST might underestimate the benefit of pembrolizumab in approximately 15% of patients; modified criteria that permit treatment beyond initial progression per RECIST v1.1 might prevent premature cessation of treatment.


Cancer | 2011

Prognostic Factors for Survival in Melanoma Patients with Brain Metastases

Michael A. Davies; Ping Liu; Susan McIntyre; Kevin B. Kim; Nicholas E. Papadopoulos; Wen-Jen Hwu; Patrick Hwu; Agop Y. Bedikian

One of the most common and deadly complications of melanoma is brain metastases. The outcomes of advanced melanoma patients who developed brain metastases were reviewed to identify significant prognostic factors for overall survival (OS).


Science | 2018

Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.

V. Gopalakrishnan; C. N. Spencer; Luigi Nezi; Alexandre Reuben; Miles C. Andrews; T. V. Karpinets; Peter A. Prieto; D. Vicente; K. Hoffman; Spencer C. Wei; Alexandria P. Cogdill; Li Zhao; Courtney W. Hudgens; D. S. Hutchinson; T. Manzo; M. Petaccia de Macedo; Tiziana Cotechini; T. Kumar; Wei Shen Chen; Sangeetha M. Reddy; R. Szczepaniak Sloane; J. Galloway-Pena; Hong Jiang; Pei Ling Chen; E. J. Shpall; K. Rezvani; A. M. Alousi; R. F. Chemaly; S. Shelburne; Luis Vence

Good bacteria help fight cancer Resident gut bacteria can affect patient responses to cancer immunotherapy (see the Perspective by Jobin). Routy et al. show that antibiotic consumption is associated with poor response to immunotherapeutic PD-1 blockade. They profiled samples from patients with lung and kidney cancers and found that nonresponding patients had low levels of the bacterium Akkermansia muciniphila. Oral supplementation of the bacteria to antibiotic-treated mice restored the response to immunotherapy. Matson et al. and Gopalakrishnan et al. studied melanoma patients receiving PD-1 blockade and found a greater abundance of “good” bacteria in the guts of responding patients. Nonresponders had an imbalance in gut flora composition, which correlated with impaired immune cell activity. Thus, maintaining healthy gut flora could help patients combat cancer. Science, this issue p. 91, p. 104, p. 97; see also p. 32 Gut bacteria influence patient response to cancer therapy. Preclinical mouse models suggest that the gut microbiome modulates tumor response to checkpoint blockade immunotherapy; however, this has not been well-characterized in human cancer patients. Here we examined the oral and gut microbiome of melanoma patients undergoing anti–programmed cell death 1 protein (PD-1) immunotherapy (n = 112). Significant differences were observed in the diversity and composition of the patient gut microbiome of responders versus nonresponders. Analysis of patient fecal microbiome samples (n = 43, 30 responders, 13 nonresponders) showed significantly higher alpha diversity (P < 0.01) and relative abundance of bacteria of the Ruminococcaceae family (P < 0.01) in responding patients. Metagenomic studies revealed functional differences in gut bacteria in responders, including enrichment of anabolic pathways. Immune profiling suggested enhanced systemic and antitumor immunity in responding patients with a favorable gut microbiome as well as in germ-free mice receiving fecal transplants from responding patients. Together, these data have important implications for the treatment of melanoma patients with immune checkpoint inhibitors.


Clinical Cancer Research | 2012

Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients.

Laszlo Radvanyi; Chantale Bernatchez; Minying Zhang; Patricia S. Fox; Priscilla Miller; Jessica Chacon; R Wu; Gregory Lizée; Sandy Mahoney; Gladys Alvarado; Michelle R. Glass; Valen E. Johnson; John McMannis; Elizabeth J. Shpall; Victor G. Prieto; Nicholas E. Papadopoulos; Kevin B. Kim; Jade Homsi; Agop Y. Bedikian; Wen-Jen Hwu; Sapna Pradyuman Patel; Merrick I. Ross; Jeffrey E. Lee; Jeffrey E. Gershenwald; Anthony Lucci; Richard E. Royal; Janice N. Cormier; Michael A. Davies; Rahmatu Mansaray; Orenthial J. Fulbright

Purpose: Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) is a promising treatment for metastatic melanoma unresponsive to conventional therapies. We report here on the results of an ongoing phase II clinical trial testing the efficacy of ACT using TIL in patients with metastatic melanoma and the association of specific patient clinical characteristics and the phenotypic attributes of the infused TIL with clinical response. Experimental Design: Altogether, 31 transiently lymphodepleted patients were treated with their expanded TIL, followed by two cycles of high-dose interleukin (IL)-2 therapy. The effects of patient clinical features and the phenotypes of the T cells infused on the clinical response were determined. Results: Overall, 15 of 31 (48.4%) patients had an objective clinical response using immune-related response criteria (irRC) with 2 patients (6.5%) having a complete response. Progression-free survival of more than 12 months was observed for 9 of 15 (60%) of the responding patients. Factors significantly associated with the objective tumor regression included a higher number of TIL infused, a higher proportion of CD8+ T cells in the infusion product, a more differentiated effector phenotype of the CD8+ population, and a higher frequency of CD8+ T cells coexpressing the negative costimulation molecule “B- and T-lymphocyte attenuator” (BTLA). No significant difference in the telomere lengths of TIL between responders and nonresponders was identified. Conclusion: These results indicate that the immunotherapy with expanded autologous TIL is capable of achieving durable clinical responses in patients with metastatic melanoma and that CD8+ T cells in the infused TIL, particularly differentiated effectors cells and cells expressing BTLA, are associated with tumor regression. Clin Cancer Res; 18(24); 6758–70. ©2012 AACR.


Cancer Discovery | 2016

Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade

Pei Ling Chen; Whijae Roh; Alexandre Reuben; Zachary A. Cooper; Christine N. Spencer; Peter A. Prieto; John P. Miller; Roland L. Bassett; Vancheswaran Gopalakrishnan; Khalida Wani; Mariana Petaccia de Macedo; Jacob Austin-Breneman; Hong Jiang; Qing Chang; Sangeetha M. Reddy; Wei Shen Chen; Michael T. Tetzlaff; R. Broaddus; Michael A. Davies; Jeffrey E. Gershenwald; Lauren E. Haydu; Alexander J. Lazar; Sapna Pradyuman Patel; Patrick Hwu; Wen-Jen Hwu; Adi Diab; Isabella C. Glitza; Scott E. Woodman; Luis Vence; Ignacio I. Wistuba

UNLABELLED Immune checkpoint blockade represents a major breakthrough in cancer therapy; however, responses are not universal. Genomic and immune features in pretreatment tumor biopsies have been reported to correlate with response in patients with melanoma and other cancers, but robust biomarkers have not been identified. We studied a cohort of patients with metastatic melanoma initially treated with cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) blockade (n = 53) followed by programmed death-1 (PD-1) blockade at progression (n = 46), and analyzed immune signatures in longitudinal tissue samples collected at multiple time points during therapy. In this study, we demonstrate that adaptive immune signatures in tumor biopsy samples obtained early during the course of treatment are highly predictive of response to immune checkpoint blockade and also demonstrate differential effects on the tumor microenvironment induced by CTLA4 and PD-1 blockade. Importantly, potential mechanisms of therapeutic resistance to immune checkpoint blockade were also identified. SIGNIFICANCE These studies demonstrate that adaptive immune signatures in early on-treatment tumor biopsies are predictive of response to checkpoint blockade and yield insight into mechanisms of therapeutic resistance. These concepts have far-reaching implications in this age of precision medicine and should be explored in immune checkpoint blockade treatment across cancer types. Cancer Discov; 6(8); 827-37. ©2016 AACR.See related commentary by Teng et al., p. 818This article is highlighted in the In This Issue feature, p. 803.


European Journal of Cancer | 2011

Extended schedule, escalated dose temozolomide versus dacarbazine in stage IV melanoma: final results of a randomised phase III study (EORTC 18032)

Poulam M. Patel; Stefan Suciu; Laurent Mortier; Wim H. J. Kruit; Caroline Robert; Dirk Schadendorf; Uwe Trefzer; Cornelis J. A. Punt; Reinhard Dummer; Neville Davidson; Juergen C. Becker; Robert M. Conry; John A. Thompson; Wen-Jen Hwu; Kristel Engelen; Sanjiv S. Agarwala; Ulrich Keilholz; Alexander M.M. Eggermont; Alain Spatz

PURPOSE To compare the efficacy of an extended schedule escalated dose of temozolomide versus standard dose dacarbazine in a large population of patients with stage IV melanoma. PATIENTS AND METHODS A total of 859 patients were randomised to receive oral temozolomide at 150 mg/m(2)/day for seven consecutive days every 2 weeks or dacarbazine, administered as an intravenous infusion at 1000 mg/m(2)/day on day 1 every 3 weeks. The primary endpoint was overall survival (OS), using an intent-to-treat principle. EudraCT number 2004-000654-23 NCI registration number NCT00005052. RESULTS Median OS was 9.1 months in the temozolomide arm and 9.4 months in the dacarbazine arm, with a hazard ratio (HR) of 1.00 (95%confidence interval [CI]: 0.86, 1.17; P=0.99). Median progression-free survival (PFS) was 2.3 months in the temozolomide arm and 2.2 months in the dacarbazine arm, with a HR of 0.92 (95%CI: 0.80, 1.06; P=0.27). In patients with measurable disease, overall response rate was higher in the temozolomide arm than in the dacarbazine arm (14.5% versus 9.8%, respectively), but the median duration of response was longer for dacarbazine. The extended schedule, escalated dose temozolomide arm showed more toxicity than the standard dose, single agent dacarbazine arm. The most common non-haematological treatment emergent adverse events reported in both treatment arms were nausea, fatigue and vomiting and constipation. CONCLUSION Extended schedule escalated dose Temozolomide (7 days on 7 days off) is feasible and has an acceptable safety profile, but does not improve OS and PFS in metastatic melanoma when compared to standard dose dacarbazine.

Collaboration


Dive into the Wen-Jen Hwu's collaboration.

Top Co-Authors

Avatar

Patrick Hwu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sapna Pradyuman Patel

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nicholas E. Papadopoulos

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Agop Y. Bedikian

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael A. Davies

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Isabella C. Glitza

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kevin B. Kim

California Pacific Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adi Diab

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rodabe N. Amaria

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Roland L. Bassett

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge