Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara B. Carrizosa is active.

Publication


Featured researches published by Sara B. Carrizosa.


Journal of Electronic Materials | 2015

Graphene–Inorganic Hybrids with Cobalt Oxide Polymorphs for Electrochemical Energy Systems and Electrocatalysis: Synthesis, Processing and Properties

Sanju Gupta; Sara B. Carrizosa

We report on the synthesis and physical property characterization of graphene–inorganic ‘hybrid’ nanomaterials coupled with nano-/microscale transition metal oxide polymorphs namely, cobalt oxides, i.e. CoO [Co(II)] and Co3O4 [Co(II, III)]), for alternative energy storage and conversion devices. Their demand is owed to higher specific capacitance, wide operational potential window, stability through charge–discharge cycling, environmentally benignity, easily processability, reproducibility and manufacturability. To accomplish this, we strategically designed these hybrids by direct anchoring or physisorption of CoO and CO3O4 on two different variants of graphene: graphene oxide which is semiconducting, and its reduced form showing conducting behavior via mixing dispersions of the constituents under mild ultrasonication and drop-cast (or spray-cast) resulting in different combinations. This facile approach affords strong chemical/physical attachment and is expected to have coupling between the pseudocapacitive transition metal oxides and supercapacitive graphene showing enhanced surface activity/reactivity and reasonable areal density of tailored interfaces. We used a range of complementary tools to establish microscopic structure–property-function correlations including scanning electron microscopy combined with energy dispersive x-ray spectroscopy, atomic force microscopy, x-ray diffraction, transmission electron microscopy in conjunction with selected-area electron diffraction, and resonance Raman spectroscopy combined with elemental Raman mapping. They reveal surface morphology, local (lattice dynamical) and average structure and surface charge transfer/doping due to physically (or chemically) adsorbed cobalt oxide and highlight the surface structure and interfaces. This lays the groundwork to further investigate the electrochemical properties as high-performance supercapacitor cathodes, rechargeable secondary battery anodes and electrocatalytical platforms.


Materials | 2016

Vanadium Pentoxide Nanobelt-Reduced Graphene Oxide Nanosheet Composites as High-Performance Pseudocapacitive Electrodes: ac Impedance Spectroscopy Data Modeling and Theoretical Calculations

Sanju Gupta; Bryce Aberg; Sara B. Carrizosa; Nicholas Dimakis

Graphene nanosheets and graphene nanoribbons, G combined with vanadium pentoxide (VO) nanobelts (VNBs) and VNBs forming GVNB composites with varying compositions were synthesized via a one-step low temperature facile hydrothermal decomposition method as high-performance electrochemical pseudocapacitive electrodes. VNBs from vanadium pentoxides (VO) are formed in the presence of graphene oxide (GO), a mild oxidant, which transforms into reduced GO (rGOHT), assisting in enhancing the electronic conductivity coupled with the mechanical robustness of VNBs. From electron microscopy, surface sensitive spectroscopy and other complementary structural characterization, hydrothermally-produced rGO nanosheets/nanoribbons are decorated with and inserted within the VNBs’ layered crystal structure, which further confirmed the enhanced electronic conductivity of VNBs. Following the electrochemical properties of GVNBs being investigated, the specific capacitance Csp is determined from cyclic voltammetry (CV) with a varying scan rate and galvanostatic charging-discharging (V–t) profiles with varying current density. The rGO-rich composite V1G3 (i.e., VO/GO = 1:3) showed superior specific capacitance followed by VO-rich composite V3G1 (VO/GO = 3:1), as compared to V1G1 (VO/GO = 1:1) composite, besides the constituents, i.e., rGO, rGOHT and VNBs. Composites V1G3 and V3G1 also showed excellent cyclic stability and a capacitance retention of >80% after 500 cycles at the highest specific current density. Furthermore, by performing extensive simulations and modeling of electrochemical impedance spectroscopy data, we determined various circuit parameters, including charge transfer and solution resistance, double layer and low frequency capacitance, Warburg impedance and the constant phase element. The detailed analyses provided greater insights into physical-chemical processes occurring at the electrode-electrolyte interface and highlighted the comparative performance of thin heterogeneous composite electrodes. We attribute the superior performance to the open graphene topological network being beneficial to available ion diffusion sites and the faster transport kinetics having a larger accessible geometric surface area and synergistic integration with optimal nanostructured VO loading. Computational simulations via periodic density functional theory (DFT) with and without V2O5 adatoms on graphene sheets are also performed. These calculations determine the total and partial electronic density of state (DOS) in the vicinity of the Fermi level (i.e., higher electroactive sites), in turn complementing the experimental results toward surface/interfacial charge transfer on heterogeneous electrodes.


Applied Physics Letters | 2016

Insights into electrode/electrolyte interfacial processes and the effect of nanostructured cobalt oxides loading on graphene-based hybrids by scanning electrochemical microscopy

Sanju Gupta; Sara B. Carrizosa

Nanostructured cobalt oxide polymorphs (CoO and Co3O4) deposited via electrodeposition allowed optimal loading on supercapacitive graphene nanosheets producing a set of graphene-based hybrids namely, CoO/GO, CoO/ErGO, Co3O4/GO, Co3O4/rGO, and Co3O4/ErGO, as pseudocapacitive electrochemical electrodes. We gained fundamental insights into the complex physicochemical interfacial processes at electrode surfaces and electrode/electrolyte (or solid/liquid) interfaces by scanning electrochemical microscopy operating in the feedback probe approach and imaging modes while monitoring and mapping the redox probe (re)activity behavior. We determined the various experimental descriptors including diffusion coefficient, electron transfer rate, and electroactive site distribution on electrodes. We emphasize the interplay of (1) heterogeneous basal and edge plane active sites, (2) graphene surface functional moieties (conducting/semiconducting), and (3) crystalline spinel cobalt oxides (semiconducting/insulating) coated ...


Materials | 2017

Salt-Assisted Ultrasonicated De-Aggregation and Advanced Redox Electrochemistry of Detonation Nanodiamond

Sanju Gupta; Brendan Evans; Alex Henson; Sara B. Carrizosa

Nanodiamond particles form agglomerates in the dry powder state and this poses limitation to the accessibility of their diamond-like core thus dramatically impacting their technological advancement. In this work, we report de-agglomeration of nanodiamond (ND) by using a facile technique namely, salt-assisted ultrasonic de-agglomeration (SAUD). Utilizing ultrasound energy and ionic salts (sodium chloride and sodium acetate), SAUD is expected to break apart thermally treated nanodiamond aggregates (~50–100 nm) and produce an aqueous slurry of de-aggregated stable colloidal nanodiamond dispersions by virtue of ionic interactions and electrostatic stabilization. Moreover, the SAUD technique neither has toxic chemicals nor is it difficult to remove impurities and therefore the isolated nanodiamonds produced are exceptionally suited for engineered nanocarbon for mechanical (composites, lubricants) and biomedical (bio-labeling, biosensing, bioimaging, theranostic) applications. We characterized the microscopic structure using complementary techniques including transmission electron microscopy combined with selected-area electron diffraction, optical and vibrational spectroscopy. We immobilized SAUD produced NDs on boron-doped diamond electrodes to investigate fundamental electrochemical properties. They included surface potential (or Fermi energy level), carrier density and mapping electrochemical (re)activity using advanced scanning electrochemical microscopy in the presence of a redox-active probe, with the aim of understanding the surface redox chemistry and the interfacial process of isolated nanodiamond particles as opposed to aggregated and untreated nanoparticles. The experimental findings are discussed in terms of stable colloids, quantum confinement and predominantly surface effects, defect sites (sp2–bonded C and unsaturated bonds), inner core (sp3–bonded C)/outer shell (sp2–bonded C) structure, and surface functionality. Moreover, the surface electronic states give rise to midgap states which serve as electron donors (or acceptors) depending upon the bonding (or antibonding). These are important as electroanalytical platforms for various electrocatalytic processes.


AIP Advances | 2018

Charge transfer dynamical processes at graphene-transition metal oxides/electrolyte interface for energy storage: Insights from in-situ Raman spectroelectrochemistry

Sanju Gupta; Sara B. Carrizosa; Jacek B. Jasinski; Nicholas Dimakis

Hybrids consisting of supercapacitive functionalized graphene (graphene oxide; GO reduced graphene oxide; rGO multilayer graphene; MLG, electrochemically reduced GO; ErGO) and three-dimensional graphene scaffold (rGOHT; hydrothermally prepared) decorated with cobalt nanoparticles (CoNP), nanostructured cobalt (CoO and Co3O4) and manganese (MnO2) oxide polymorphs, assembled electrochemically facilitate chemically bridged interfaces with tunable properties. Since Raman spectroscopy can capture variations in structural and chemical bonding, Raman spectro-electrochemistry in operando i.e. under electrochemical environment with applied bias is employed to 1) probe graphene/metal bonding and dynamic processes, 2) monitor the spectral changes with successive redox interfacial reactions, and 3) quantify the associated parameters including type and fraction of charge transfer. The transverse optical (TO) and longitudinal optical (LO) phonons above 500 cm−1 belonging to Co3O4, CoO, MnO2 and carbon-carbon bonding occurring at 1340 cm-1, 1590 cm−1 and 2670 cm-1 belonging to D, G, and 2D bands, respectively, are analyzed with applied potential. Consistent variation in Raman band position and intensity ratio reveal structural modification, combined charge transfer due to localized orbital re-hybridization and mechanical strain, all resulting in finely tuned electronic properties. Moreover, the heterogeneous basal and edge plane sites of graphene nanosheets in conjunction with transition metal oxide ‘hybrids’ reinforce efficient surface/interfacial electron transfer and available electronic density of states near Fermi level for enhanced performance. We estimated the extent and nature (n− or p−) of charge transfer complemented with Density Functional Theory calculations affected by hydration and demonstrate the synergistic coupling between graphene nanosheets and nanoscale cobalt (and manganese) oxides for applied electrochemical applications.Hybrids consisting of supercapacitive functionalized graphene (graphene oxide; GO reduced graphene oxide; rGO multilayer graphene; MLG, electrochemically reduced GO; ErGO) and three-dimensional graphene scaffold (rGOHT; hydrothermally prepared) decorated with cobalt nanoparticles (CoNP), nanostructured cobalt (CoO and Co3O4) and manganese (MnO2) oxide polymorphs, assembled electrochemically facilitate chemically bridged interfaces with tunable properties. Since Raman spectroscopy can capture variations in structural and chemical bonding, Raman spectro-electrochemistry in operando i.e. under electrochemical environment with applied bias is employed to 1) probe graphene/metal bonding and dynamic processes, 2) monitor the spectral changes with successive redox interfacial reactions, and 3) quantify the associated parameters including type and fraction of charge transfer. The transverse optical (TO) and longitudinal optical (LO) phonons above 500 cm−1 belonging to Co3O4, CoO, MnO2 and carbon-carbon bonding oc...


Composites Part B-engineering | 2016

Microstructure, residual stress, and intermolecular force distribution maps of graphene/polymer hybrid composites: Nanoscale morphology-promoted synergistic effects

Sanju Gupta; B. McDonald; Sara B. Carrizosa; Carson Price


Journal of Materials Research | 2017

Graphene-family nanomaterials assembled with cobalt oxides and cobalt nanoparticles as hybrid supercapacitive electrodes and enzymeless glucose detection platforms – CORRIGENDUM

Sanju Gupta; Sara B. Carrizosa; Benjamin McDonald; Jacek B. Jasinski; Nicholas Dimakis


Journal of Physical Chemistry C | 2017

Diamond Phase (sp3-C) Rich Boron-Doped Carbon Nanowalls (sp2-C): Physicochemical and Electrochemical Properties

Michał Sobaszek; Katarzyna Siuzdak; Jacek Ryl; M. Sawczak; Sanju Gupta; Sara B. Carrizosa; Mateusz Ficek; Bartłomiej Dec; Kazimierz Darowicki; Robert Bogdanowicz


Journal of Electronic Materials | 2017

Surface Redox Chemistry of Immobilized Nanodiamond: Effects of Particle Size and Electrochemical Environment

Sanju Gupta; B. McDonald; Sara B. Carrizosa


MRS Advances | 2018

Facile Synthesis of Water-Soluble Graphene Quantum Dots/Graphene for Efficient Photodetector

Sanju Gupta; Jared Walden; Alexander Banaszak; Sara B. Carrizosa

Collaboration


Dive into the Sara B. Carrizosa's collaboration.

Top Co-Authors

Avatar

Sanju Gupta

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

B. McDonald

Western Kentucky University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brendan Evans

Western Kentucky University

View shared research outputs
Top Co-Authors

Avatar

Carson Price

Western Kentucky University

View shared research outputs
Top Co-Authors

Avatar

Bartłomiej Dec

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jacek Ryl

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Siuzdak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kazimierz Darowicki

Gdańsk University of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Sawczak

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge