Sanju Gupta
Western Kentucky University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sanju Gupta.
Journal of Electronic Materials | 2015
Sanju Gupta; Sara B. Carrizosa
We report on the synthesis and physical property characterization of graphene–inorganic ‘hybrid’ nanomaterials coupled with nano-/microscale transition metal oxide polymorphs namely, cobalt oxides, i.e. CoO [Co(II)] and Co3O4 [Co(II, III)]), for alternative energy storage and conversion devices. Their demand is owed to higher specific capacitance, wide operational potential window, stability through charge–discharge cycling, environmentally benignity, easily processability, reproducibility and manufacturability. To accomplish this, we strategically designed these hybrids by direct anchoring or physisorption of CoO and CO3O4 on two different variants of graphene: graphene oxide which is semiconducting, and its reduced form showing conducting behavior via mixing dispersions of the constituents under mild ultrasonication and drop-cast (or spray-cast) resulting in different combinations. This facile approach affords strong chemical/physical attachment and is expected to have coupling between the pseudocapacitive transition metal oxides and supercapacitive graphene showing enhanced surface activity/reactivity and reasonable areal density of tailored interfaces. We used a range of complementary tools to establish microscopic structure–property-function correlations including scanning electron microscopy combined with energy dispersive x-ray spectroscopy, atomic force microscopy, x-ray diffraction, transmission electron microscopy in conjunction with selected-area electron diffraction, and resonance Raman spectroscopy combined with elemental Raman mapping. They reveal surface morphology, local (lattice dynamical) and average structure and surface charge transfer/doping due to physically (or chemically) adsorbed cobalt oxide and highlight the surface structure and interfaces. This lays the groundwork to further investigate the electrochemical properties as high-performance supercapacitor cathodes, rechargeable secondary battery anodes and electrocatalytical platforms.
Journal of Electronic Materials | 2015
Sanju Gupta; M. M. van Meveren; J. Jasinski
Technological progress is determined to a greater extent by developments of novel materials or new combinations of known materials with different dimensionality and diverse functionality. In this work, we report on the synthesis and characterization of graphene-based hybrid nanomaterials coupled with transition-metal oxide polymorphs (nano/micro-manganese oxides, i.e., β-MnO2 [Mn(IV)] and Mn3O4 [Mn(II, III)]). This lays the groundwork for high-performance electrochemical electrodes for alternative energy devices owing to their higher specific capacitance, wide operational potential window and stability through charge–discharge cycling, environmentally benignity, cost-effectiveness, easy processing, and reproducibility on a larger scale. To accomplish this, we strategically designed these hybrids by direct anchoring or physical adsorption of β-MnO2 and Mn3O4 on variants of graphene, namely graphene oxide and its reduced form, via mixing dispersions of the constituents under mild ultrasonication and drop-casting, resulting in four different combinations. This facile approach affords strong chemical/physical attachment and is expected to result in coupling between the pseudocapacitive transition-metal oxides and supercapacitive nanocarbons showing enhanced activity/reactivity and reasonable areal density of tailored interfaces. We used a range of complementary analytical characterization tools to determine the structure and physical properties, such as scanning electron microscopy combined with energy-dispersive x-ray spectroscopy, atomic force microscopy, x-ray diffraction, resonance Raman spectroscopy combined with elemental Raman mapping, and transmission electron microscopy in conjunction with selected-area electron diffraction. All of these techniques reveal surface morphology, local (lattice dynamical) and average structure, and local charge transfer due to the physically (or chemically) adsorbed manganese oxide of synthesized hybrids that helps to establish microscopic structure–property–function correlations highlighting the surface structure and interfaces to further investigate their electrochemical supercapacitor properties.
AIP Advances | 2015
Sanju Gupta; Aline Irihamye
Graphene-based nanomaterials have shown great promise not only in nanoelectronics due to ultrahigh electron mobility but also as biocatalytic scaffolds owing to irreversible protein surface adsorption and facilitating direct electron transfer. In this work, we synthesized stable dispersions of graphene using liquid-phase exfoliation approach based on non-covalent interactions between graphene and 1-pyrenesulfonic acid sodium salt (Py–1SO3), 1-pyrenemethylamine salt (Py − Me-NH2) and Pluronic® P-123 surfactant using only water as solvent compatible with biomolecules. The resulting graphene nanoplatelets (Gr_LPE) are characterized by a combination of analytical (microscopy and spectroscopy) techniques revealing mono- to few-layer graphene displaying that the exfoliation efficiency strongly depends upon the type of pyrene-based salts and organic surfactants. Moreover being completely water-based approach, we build robust nanoscaffolds of graphene-family nanomaterials (GFNs) namely, monolayer graphene, Gr_LPE...
Materials | 2016
Sanju Gupta; Bryce Aberg; Sara B. Carrizosa; Nicholas Dimakis
Graphene nanosheets and graphene nanoribbons, G combined with vanadium pentoxide (VO) nanobelts (VNBs) and VNBs forming GVNB composites with varying compositions were synthesized via a one-step low temperature facile hydrothermal decomposition method as high-performance electrochemical pseudocapacitive electrodes. VNBs from vanadium pentoxides (VO) are formed in the presence of graphene oxide (GO), a mild oxidant, which transforms into reduced GO (rGOHT), assisting in enhancing the electronic conductivity coupled with the mechanical robustness of VNBs. From electron microscopy, surface sensitive spectroscopy and other complementary structural characterization, hydrothermally-produced rGO nanosheets/nanoribbons are decorated with and inserted within the VNBs’ layered crystal structure, which further confirmed the enhanced electronic conductivity of VNBs. Following the electrochemical properties of GVNBs being investigated, the specific capacitance Csp is determined from cyclic voltammetry (CV) with a varying scan rate and galvanostatic charging-discharging (V–t) profiles with varying current density. The rGO-rich composite V1G3 (i.e., VO/GO = 1:3) showed superior specific capacitance followed by VO-rich composite V3G1 (VO/GO = 3:1), as compared to V1G1 (VO/GO = 1:1) composite, besides the constituents, i.e., rGO, rGOHT and VNBs. Composites V1G3 and V3G1 also showed excellent cyclic stability and a capacitance retention of >80% after 500 cycles at the highest specific current density. Furthermore, by performing extensive simulations and modeling of electrochemical impedance spectroscopy data, we determined various circuit parameters, including charge transfer and solution resistance, double layer and low frequency capacitance, Warburg impedance and the constant phase element. The detailed analyses provided greater insights into physical-chemical processes occurring at the electrode-electrolyte interface and highlighted the comparative performance of thin heterogeneous composite electrodes. We attribute the superior performance to the open graphene topological network being beneficial to available ion diffusion sites and the faster transport kinetics having a larger accessible geometric surface area and synergistic integration with optimal nanostructured VO loading. Computational simulations via periodic density functional theory (DFT) with and without V2O5 adatoms on graphene sheets are also performed. These calculations determine the total and partial electronic density of state (DOS) in the vicinity of the Fermi level (i.e., higher electroactive sites), in turn complementing the experimental results toward surface/interfacial charge transfer on heterogeneous electrodes.
Applied Physics Letters | 2016
Sanju Gupta; Sara B. Carrizosa
Nanostructured cobalt oxide polymorphs (CoO and Co3O4) deposited via electrodeposition allowed optimal loading on supercapacitive graphene nanosheets producing a set of graphene-based hybrids namely, CoO/GO, CoO/ErGO, Co3O4/GO, Co3O4/rGO, and Co3O4/ErGO, as pseudocapacitive electrochemical electrodes. We gained fundamental insights into the complex physicochemical interfacial processes at electrode surfaces and electrode/electrolyte (or solid/liquid) interfaces by scanning electrochemical microscopy operating in the feedback probe approach and imaging modes while monitoring and mapping the redox probe (re)activity behavior. We determined the various experimental descriptors including diffusion coefficient, electron transfer rate, and electroactive site distribution on electrodes. We emphasize the interplay of (1) heterogeneous basal and edge plane active sites, (2) graphene surface functional moieties (conducting/semiconducting), and (3) crystalline spinel cobalt oxides (semiconducting/insulating) coated ...
AIP Advances | 2015
Sanju Gupta; Carson Price
Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO)1, (PPy/ErGO)1, (PAni/GO)1 and (PPy/GO)1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g−1 as compared with constituents (∼70 F g−1) at discharge current density of 0.3 A g−1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (re)activity of surface ion adsorption sites density at solid/liquid interface.
AIP Advances | 2018
Sanju Gupta; Sara B. Carrizosa; Jacek B. Jasinski; Nicholas Dimakis
Hybrids consisting of supercapacitive functionalized graphene (graphene oxide; GO reduced graphene oxide; rGO multilayer graphene; MLG, electrochemically reduced GO; ErGO) and three-dimensional graphene scaffold (rGOHT; hydrothermally prepared) decorated with cobalt nanoparticles (CoNP), nanostructured cobalt (CoO and Co3O4) and manganese (MnO2) oxide polymorphs, assembled electrochemically facilitate chemically bridged interfaces with tunable properties. Since Raman spectroscopy can capture variations in structural and chemical bonding, Raman spectro-electrochemistry in operando i.e. under electrochemical environment with applied bias is employed to 1) probe graphene/metal bonding and dynamic processes, 2) monitor the spectral changes with successive redox interfacial reactions, and 3) quantify the associated parameters including type and fraction of charge transfer. The transverse optical (TO) and longitudinal optical (LO) phonons above 500 cm−1 belonging to Co3O4, CoO, MnO2 and carbon-carbon bonding occurring at 1340 cm-1, 1590 cm−1 and 2670 cm-1 belonging to D, G, and 2D bands, respectively, are analyzed with applied potential. Consistent variation in Raman band position and intensity ratio reveal structural modification, combined charge transfer due to localized orbital re-hybridization and mechanical strain, all resulting in finely tuned electronic properties. Moreover, the heterogeneous basal and edge plane sites of graphene nanosheets in conjunction with transition metal oxide ‘hybrids’ reinforce efficient surface/interfacial electron transfer and available electronic density of states near Fermi level for enhanced performance. We estimated the extent and nature (n− or p−) of charge transfer complemented with Density Functional Theory calculations affected by hydration and demonstrate the synergistic coupling between graphene nanosheets and nanoscale cobalt (and manganese) oxides for applied electrochemical applications.Hybrids consisting of supercapacitive functionalized graphene (graphene oxide; GO reduced graphene oxide; rGO multilayer graphene; MLG, electrochemically reduced GO; ErGO) and three-dimensional graphene scaffold (rGOHT; hydrothermally prepared) decorated with cobalt nanoparticles (CoNP), nanostructured cobalt (CoO and Co3O4) and manganese (MnO2) oxide polymorphs, assembled electrochemically facilitate chemically bridged interfaces with tunable properties. Since Raman spectroscopy can capture variations in structural and chemical bonding, Raman spectro-electrochemistry in operando i.e. under electrochemical environment with applied bias is employed to 1) probe graphene/metal bonding and dynamic processes, 2) monitor the spectral changes with successive redox interfacial reactions, and 3) quantify the associated parameters including type and fraction of charge transfer. The transverse optical (TO) and longitudinal optical (LO) phonons above 500 cm−1 belonging to Co3O4, CoO, MnO2 and carbon-carbon bonding oc...
Archive | 2018
Sanju Gupta; Avadh Saxena
We underscore the substantial need for understanding a wide range of multifunctional materials through the notions of topology-geometry interrelationships such as genus, Euler characteristic and network connectivity. After introducing the basic concepts of topology we first illustrate these notions on nanocarbon allotropes as a case study. Next, we consider the growing class of emergent topological materials that encompass both real-space and k-space topological materials including Dirac materials, topological insulators, Weyl semimetals as well as soft and polymeric matter, supramacromolecular assemblies and biophotonic materials. Finally, we emphasize and evaluate metrics to quantify topology in order to study and classify materials properties relevant for wide ranging modern and future technologies.
Journal of Applied Physics | 2018
Sanju Gupta; Romney Meek; Brendan Evans; Nicholas Dimakis
Electrochemical activity of graphene and graphene-based “hybrid” nanomaterials is crucial for energy and water sustainability applications, which requires fine tuning over combined geometric and electronic structures. We demonstrate that precise control of defects, porosity, and topological interconnectedness, invoked in hydrothermally synthesized graphene aerogel integrated with multi-walled carbon nanotubes, promotes finely tuned morphology, structure, defect number density, hierarchical mesoporosity, and conductivity and enhances the electrochemical heterogeneous electron transfer rate (kET). We prepared a range of graphene-based “hybrid” scaffolds (or monolithic aerogels) and their nitrogenated equivalents with varying graphene–carbon nanotube compositions using two synthetic schemes known as approaches 1 and 2. This study allows us to correlate quantitatively between number defect density (via Raman spectroscopy; RS) and heterogeneous electron transfer rate (via scanning electrochemical microscopy). RS provided microscale structural characterization revealing localized lattice vibrations. The first- and second-order Raman bands were analyzed in terms of band position, intensity ratio, and integrated intensity determining structural disorder, in-plane cluster size, inter-defect distance, and number defect density. The role of oxygenated (carbonyl; C═O, carboxyl; —COOH) and nitrogenated (pryridinic-N and graphitic/pyrrolic-N) functionalities and bonding configurations besides mesoporosity is emphasized for understanding the role of surface chemistry in regionally improved physicochemical (electroactivity and catalytic) properties. The defect-induced increase in finite electronic density of states (DOS) near Fermi level calculated using density functional theory under hydration helped in establishing moderate defect density for enhanced heterogeneous electron transfer rate as a critical onset such that the carbon system is electroactive while maintaining integral sp2 C structural network. Moreover, the defect sites allow sufficient overlap between DOS for graphene-based aerogels and redox probe wavefunctions, which emphasizes the experimental correlation establishments.Electrochemical activity of graphene and graphene-based “hybrid” nanomaterials is crucial for energy and water sustainability applications, which requires fine tuning over combined geometric and electronic structures. We demonstrate that precise control of defects, porosity, and topological interconnectedness, invoked in hydrothermally synthesized graphene aerogel integrated with multi-walled carbon nanotubes, promotes finely tuned morphology, structure, defect number density, hierarchical mesoporosity, and conductivity and enhances the electrochemical heterogeneous electron transfer rate (kET). We prepared a range of graphene-based “hybrid” scaffolds (or monolithic aerogels) and their nitrogenated equivalents with varying graphene–carbon nanotube compositions using two synthetic schemes known as approaches 1 and 2. This study allows us to correlate quantitatively between number defect density (via Raman spectroscopy; RS) and heterogeneous electron transfer rate (via scanning electrochemical microscopy). ...
Composites Part B-engineering | 2016
Sanju Gupta; Carson Price