Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Borniquel is active.

Publication


Featured researches published by Sara Borniquel.


Cell Metabolism | 2011

Dietary Inorganic Nitrate Improves Mitochondrial Efficiency in Humans

Filip J. Larsen; Tomas A. Schiffer; Sara Borniquel; Kent Sahlin; Björn Ekblom; Jon O. Lundberg; Eddie Weitzberg

Nitrate, an inorganic anion abundant in vegetables, is converted in vivo to bioactive nitrogen oxides including NO. We recently demonstrated that dietary nitrate reduces oxygen cost during physical exercise, but the mechanism remains unknown. In a double-blind crossover trial we studied the effects of a dietary intervention with inorganic nitrate on basal mitochondrial function and whole-body oxygen consumption in healthy volunteers. Skeletal muscle mitochondria harvested after nitrate supplementation displayed an improvement in oxidative phosphorylation efficiency (P/O ratio) and a decrease in state 4 respiration with and without atractyloside and respiration without adenylates. The improved mitochondrial P/O ratio correlated to the reduction in oxygen cost during exercise. Mechanistically, nitrate reduced the expression of ATP/ADP translocase, a protein involved in proton conductance. We conclude that dietary nitrate has profound effects on basal mitochondrial function. These findings may have implications for exercise physiology- and lifestyle-related disorders that involve dysfunctional mitochondria.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice

Mattias Carlström; Filip J. Larsen; Thomas Nyström; Michael Hezel; Sara Borniquel; Eddie Weitzberg; Jon O. Lundberg

The metabolic syndrome is a clustering of risk factors of metabolic origin that increase the risk for cardiovascular disease and type 2 diabetes. A proposed central event in metabolic syndrome is a decrease in the amount of bioavailable nitric oxide (NO) from endothelial NO synthase (eNOS). Recently, an alternative pathway for NO formation in mammals was described where inorganic nitrate, a supposedly inert NO oxidation product and unwanted dietary constituent, is serially reduced to nitrite and then NO and other bioactive nitrogen oxides. Here we show that several features of metabolic syndrome that develop in eNOS-deficient mice can be reversed by dietary supplementation with sodium nitrate, in amounts similar to those derived from eNOS under normal conditions. In humans, this dose corresponds to a rich intake of vegetables, the dominant dietary nitrate source. Nitrate administration increased tissue and plasma levels of bioactive nitrogen oxides. Moreover, chronic nitrate treatment reduced visceral fat accumulation and circulating levels of triglycerides and reversed the prediabetic phenotype in these animals. In rats, chronic nitrate treatment reduced blood pressure and this effect was also present during NOS inhibition. Our results show that dietary nitrate fuels a nitrate–nitrite–NO pathway that can partly compensate for disturbances in endogenous NO generation from eNOS. These findings may have implications for novel nutrition-based preventive and therapeutic strategies against cardiovascular disease and type 2 diabetes.


Journal of Biological Chemistry | 2009

Mutual Dependence of Foxo3a and PGC-1α in the Induction of Oxidative Stress Genes

Yolanda Olmos; Inmaculada Valle; Sara Borniquel; Alberto Tierrez; Estrella Soria; Santiago Lamas; María Monsalve

Oxidative stress is a hallmark of metabolism-related diseases and a risk factor for atherosclerosis. FoxO factors have been shown to play a key role in vascular endothelial development and homeostasis. Foxo3a can protect quiescent cells from oxidative stress through the regulation of detoxification genes such as sod2 and catalase. Here we show that Foxo3a is a direct transcriptional regulator of a group of oxidative stress protection genes in vascular endothelial cells. Importantly, Foxo3a activity requires the transcriptional co-activator PGC-1α, because it is severely curtailed in PGC-1α-deficient endothelial cells. Foxo3a and PGC-1α appear to interact directly, as shown by co-immunoprecipitation and in vitro interaction assays, and are recruited to the same promoter regions. The notion that Foxo3a and PGC-1α interact directly to regulate oxidative stress protection genes in the vascular endothelium is supported by the observation that PGC-1α transcriptional activity at the sod2 (manganese superoxide dismutase) promoter requires a functional FoxO site. We also demonstrate that Foxo3a is a direct transcriptional regulator of PGC-1α, suggesting that an auto-regulatory cycle regulates Foxo3a/PGC-1α control of the oxidative stress response.


Free Radical Biology and Medicine | 2013

Microbial regulation of host hydrogen sulfide bioavailability and metabolism.

Xinggui Shen; Mattias Carlström; Sara Borniquel; Cecilia Jädert; Christopher G. Kevil; Jon O. Lundberg

Hydrogen sulfide (H2S), generated through various endogenous enzymatic and nonenzymatic pathways, is emerging as a regulator of physiological and pathological events throughout the body. Bacteria in the gastrointestinal tract also produce significant amounts of H2S that regulates microflora growth and virulence responses. However, the impact of the microbiota on host global H2S bioavailability and metabolism remains unknown. To address this question, we examined H2S bioavailability in its various forms (free, acid labile, or bound sulfane sulfur), cystathionine γ-lyase (CSE) activity, and cysteine levels in tissues from germ-free versus conventionally housed mice. Free H2S levels were significantly reduced in plasma and gastrointestinal tissues of germ-free mice. Bound sulfane sulfur levels were decreased by 50-80% in germ-free mouse plasma and adipose and lung tissues. Tissue CSE activity was significantly reduced in many organs from germ-free mice, whereas tissue cysteine levels were significantly elevated compared to conventional mice. These data reveal that the microbiota profoundly regulates systemic bioavailability and metabolism of H2S.


Free Radical Biology and Medicine | 2010

Nitrated oleic acid up-regulates PPARγ and attenuates experimental inflammatory bowel disease.

Sara Borniquel; Emmelie Å. Jansson; Marsha P. Cole; Bruce A. Freeman; Jon O. Lundberg

Nitric oxide and its metabolites undergo nitration reactions with unsaturated fatty acids during oxidative inflammatory conditions, forming electrophilic nitro-fatty acid derivatives. These endogenous electrophilic mediators activate anti-inflammatory signaling reactions, serving as high-affinity ligands for peroxisome proliferator-activated receptor gamma (PPARgamma). Here we examined the therapeutic effects of 9- or 10-nitro-octadecenoic oleic acid (OA-NO(2)) and native oleic acid (OA) in a mouse model of colitis. OA-NO(2) reduced the disease activity index and completely prevented dextran sulfate sodium-induced colon shortening and the increase in colonic p65 expression. Increased PPARgamma expression was observed in colon samples as well as in cells after OA-NO(2) administration, whereas no effect was seen with OA. This induction of PPARgamma expression was completely abolished by the PPARgamma antagonist GW9662. 5-Aminosalicylic acid, an anti-inflammatory drug routinely used in the management of inflammatory bowel disease, also increased PPARgamma expression but to a lesser extent. Altogether, these findings demonstrate that administration of OA-NO(2) attenuates colonic inflammation and improves clinical symptoms in experimental inflammatory bowel disease. This protection involves activation of colonic PPARgamma.


Antioxidants & Redox Signaling | 2014

Cross-talk Between Nitrate-Nitrite-NO and NO Synthase Pathways in Control of Vascular NO Homeostasis

Mattias Carlström; Ming Liu; Ting Yang; Christa Zollbrecht; Liyue Huang; Maria Peleli; Sara Borniquel; Hiroaki Kishikawa; Michael Hezel; A. Erik G. Persson; Eddie Weitzberg; Jon O. Lundberg

AIMS Inorganic nitrate and nitrite from endogenous and dietary sources have emerged as alternative substrates for nitric oxide (NO) formation in addition to the classic L-arginine NO synthase (NOS)-dependent pathway. Here, we investigated a potential cross-talk between these two pathways in the regulation of vascular function. RESULTS Long-term dietary supplementation with sodium nitrate (0.1 and 1 mmol kg(-1) day(-1)) in rats caused a reversible dose-dependent reduction in phosphorylated endothelial NOS (eNOS) (Ser1177) in aorta and a concomitant increase in phosphorylation at Thr495. Moreover, eNOS-dependent vascular responses were attenuated in vessels harvested from nitrate-treated mice or when nitrite was acutely added to control vessels. The citrulline-to-arginine ratio in plasma, as a measure of eNOS activity, was reduced in nitrate-treated rodents. Telemetry measurements revealed that a low dietary nitrate dose reduced blood pressure, whereas a higher dose was associated with a paradoxical elevation. Finally, plasma cyclic guanosine monophosphate increased in mice that were treated with a low dietary nitrate dose and decreased with a higher dose. INNOVATION AND CONCLUSIONS These results demonstrate the existence of a cross-talk between the nitrate-nitrite-NO pathway and the NOS-dependent pathway in control of vascular NO homeostasis.


Molecular and Cellular Biology | 2010

Inactivation of Foxo3a and Subsequent Downregulation of PGC-1α Mediate Nitric Oxide-Induced Endothelial Cell Migration

Sara Borniquel; Nieves García-Quintáns; Inmaculada Valle; Yolanda Olmos; Brigitte Wild; Francisco Martínez-Granero; Estrella Soria; Santiago Lamas; María Monsalve

ABSTRACT In damaged or proliferating endothelium, production of nitric oxide (NO) from endothelial nitric oxide synthase (eNOS) is associated with elevated levels of reactive oxygen species (ROS), which are necessary for endothelial migration. We aimed to elucidate the mechanism that mediates NO induction of endothelial migration. NO downregulates expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which positively modulates several genes involved in ROS detoxification. We tested whether NO-induced cell migration requires PGC-1α downregulation and investigated the regulatory pathway involved. PGC-1α negatively regulated NO-dependent endothelial cell migration in vitro, and inactivation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, which is activated by NO, reduced NO-mediated downregulation of PGC-1α. Expression of constitutively active Foxo3a, a target for Akt-mediated inactivation, reduced NO-dependent PGC-1α downregulation. Foxo3a is also a direct transcriptional regulator of PGC-1α, and we found that a functional FoxO binding site in the PGC-1α promoter is also a NO response element. These results show that NO-mediated downregulation of PGC-1α is necessary for NO-induced endothelial migration and that NO/protein kinase G (PKG)-dependent downregulation of PGC-1α and the ROS detoxification system in endothelial cells are mediated by the PI3K/Akt signaling pathway and subsequent inactivation of the FoxO transcription factor Foxo3a.


Nitric Oxide | 2010

Enhanced xanthine oxidoreductase expression and tissue nitrate reduction in germ free mice.

Liyue Huang; Sara Borniquel; Jon O. Lundberg

The nitrate-nitrite-NO pathway is emerging as an alternative to the l-arginine/NO-synthase pathway for the generation of NO in mammals. Bioactivation of the stable nitrate anion involves initial reduction to nitrite by commensal bacteria in the gastrointestinal tract. Nitrite is then further metabolized in blood and tissues to form nitric oxide (NO) and other bioactive nitrogen oxides. In addition to nitrate reduction by bacteria, a functional mammalian nitrate reductase activity was recently explored. It was demonstrated that xanthine oxidoreductase (XOR) and possibly other enzymes can catalyze nitrate reduction under normoxic conditions in vivo. In the present study, we compared nitrate reduction in germ free (GF) and conventional mice. One aim was to see if the complete lack of bacterial nitrate reduction in the GF mice would be associated with an upregulation of mammalian nitrate reductase activity. Sodium nitrate (NaNO(3)) or placebo (NaCl) was injected intraperitoneally and blood and tissues were collected 1.5-2h later for measurements of nitrate and nitrite and in some cases analyses of protein expression. Tissue and plasma levels of nitrate increased to a similar extent in conventional and GF animals after nitrate administration. Plasma nitrite was 3-fold higher in GF mice receiving nitrate compared to placebo while this effect of nitrate was absent in the conventional mice. In GF mice pretreated with the xanthine oxidase inhibitor allopurinol the increase in nitrite was attenuated. The levels of nitrite in the liver and small intestine increased after the nitrate load in GF mice but not in the conventional mice. Anaerobic nitrate reduction to nitrite in intestinal tissue homogenates was also accelerated in GF mice. Studies of tissue protein levels revealed increased expression of XOR in the livers of GF animals. We conclude that XOR expression in tissues is enhanced in germ free mice and this may explain the apparently greater tissue nitrate reductase activity observed in these animals. Future studies will reveal if this represents a compensatory functional response to uphold nitrite homeostasis in the absence of commensal bacteria.


Redox biology | 2014

Preventive and therapeutic effects of nitrite supplementation in experimental inflammatory bowel disease

Cecilia Jädert; Mia Phillipson; Lena Holm; Jon O. Lundberg; Sara Borniquel

Background Inorganic nitrate and nitrite have emerged as alternative substrates for nitric oxide (NO) generation in the gastrointestinal tract, and have shown to be protective against drug-induced gastric injury. The aim of this study was to investigate the preventive and therapeutic effects of nitrate and nitrite in a model of experimental colitis. Methods Colitis was induced in mice by administrating dextran sulfate sodium (DSS) with concurrent administration of nitrite (1 mM) or nitrate (10 mM) in the drinking water for 7 days. A therapeutic approach was also investigated by initiating nitrite treatment 3 days after DSS-induced colitis. Clinical and inflammatory markers were assessed and the colonic mucus thickness was measured in vivo. The effect of nitrite on wound healing was evaluated using colon epithelial cells. Results Concurrent administration of DSS and nitrite (1 mM) alleviated inflammation as determined by reduced disease activity index score (DAI) and increased colon length, while nitrate (10 mM) only reduced the DAI-score. Nitrite also displayed therapeutic effects by ameliorating established colonic inflammation with reduced colonic expression of iNOS and improving histopathology. DSS-induced decrease in colonic mucus thickness was completely prevented by nitrite administration. In addition, goblet cell abundance was lower by DSS treatment, but was increased by addition of nitrite. Further studies using colon epithelial cells revealed an NO-dependent improvement in wound healing with nitrite administration. Conclusion Nitrite exerts both preventive and therapeutic effects in colonic inflammation. The protective effects involve preservation of an intact adherent mucus layer and regulation of epithelial cell restitution.


Journal of Nutrition | 2012

Dietary Conjugated Linoleic Acid Activates PPARγ and the Intestinal Trefoil Factor in SW480 Cells and Mice with Dextran Sulfate Sodium-Induced Colitis

Sara Borniquel; Cecilia Jädert; Jon O. Lundberg

A central event in inflammatory bowel disease is the disruption of the mucosal homeostasis. Trefoil peptides [(TFF)] are emerging as key mediators in the defense and repair of the gastrointestinal mucosa. Here, we demonstrate induction of TFF by CLA with therapeutic antiinflammatory effects in a mouse model of inflammatory bowel disease. SW480 cells were treated with linoleic acid or CLA (0-2.5 μmol/L) in the absence or presence of the PPARγ inhibitor GW9662. Cells treated with CLA showed an upregulation of the intestinal trefoil factor, which was prevented by pretreatment with GW9662. Dextran sulfate sodium (2%) was used to induce colitis in mice and they were simultaneously fed with a standard or a CLA-supplemented (100 mg · kg(-1) · d(-1)) diet for 7 d. The CLA-enriched diet prevented the colon shortening induced by DSS and markedly reduced the disease activity index and the colonic expression of inducible NO synthase and NF-κB. Immunohistochemistry revealed an increase in PPARγ and TFF3 expression after CLA administration. Altogether, these results indicate that dietary CLA protects against DSS-induced colitis in a process involving induction of PPARγ and TFF3.

Collaboration


Dive into the Sara Borniquel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inmaculada Valle

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María Monsalve

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Santiago Lamas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge