Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Capoccia is active.

Publication


Featured researches published by Sara Capoccia.


Psychoneuroendocrinology | 2012

Social deprivation stress is a triggering factor for the emergence of anxiety- and depression-like behaviours and leads to reduced brain BDNF levels in C57BL/6J mice.

Alessandra Berry; Veronica Bellisario; Sara Capoccia; Paola Tirassa; Arianna Calza; Enrico Alleva; Francesca Cirulli

Stress is a main risk factor that can trigger psychiatric disorders, including anxiety and major depression. Neurotrophins, such as Brain-Derived Neurotrophic Factor (BDNF), have been identified as neuroendocrine effectors involved in the response to stress and in the neurobehavioural changes associated with depression. Aim of this paper was to study the relationship between neuroendocrine activation (circulating corticosterone and brain BDNF levels) and a wide array of depression- and anxiety-like behaviours (anhedonia, behavioural despair, generalised and social anxiety) resulting from exposure to chronic stress. To this end, 3-month-old C57BL/6J male mice were exposed to either chronic disruption of the social structure (SS), to a stable social structure (SG) or to social deprivation (SD), a condition lacking social stimuli. Results show that, despite not developing anhedonia (decreased preference for a sucrose solution), SD mice were characterised by increased emotionality and hypothalamic-pituitary-adrenal axis reactivity in addition to reduced BDNF levels. By contrast, SG and SS mice showed increased anhedonia accompanied by no alterations in the behavioural and neuroendocrine profile. The results here reported indicate that mice exposed to different social housing conditions use different behavioural strategies to cope with external challenges. In addition they suggest that social deprivation might represent a stressful condition triggering the emergence of both anxiety- and depression-like behaviours and clearly indicate BDNF as a main neurobiological variable mediating these responses.


European Neuropsychopharmacology | 2014

Delayed BDNF alterations in the prefrontal cortex of rats exposed to prenatal stress: Preventive effect of lurasidone treatment during adolescence

Alessia Luoni; Alessandra Berry; Francesca Calabrese; Sara Capoccia; Veronica Bellisario; Peter Gass; Francesca Cirulli; Marco Riva

Psychiatric diseases may often represent the consequence of exposure to adverse events early in life. Accordingly, exposure to stress during gestation in rats has a strong impact on development and can cause long-term abnormalities in adult behavior. Considering that neuronal plasticity has emerged as a major vulnerability element in psychiatric disorders, we investigated the postnatal developmental profile of Brain-Derived Neurotrophic Factor expression (BDNF), an important mediator for long-term functional deterioration associated to mental illness, in male and female rats following exposure to prenatal stress (PNS). Since we found that the majority of alterations became fully manifest at early adulthood, we tried to prevent these abnormalities with an early pharmacological intervention. To address this point, we treated rats during adolescence with the multi-receptor antipsychotic lurasidone, which was proven to be effective in animal models of schizophrenia. Interestingly, we show that lurasidone treatment was able to prevent the reduction of BDNF expression in adult rats that were exposed to PNS. Collectively, our results provide further support to the notion that exposure to early life stress has a negative impact on neuronal plasticity and that pharmacological intervention during critical time windows may prove effective in preventing neuroplastic dysfunction, leading to long-term beneficial effects on brain function.


PLOS ONE | 2013

Antidepressant Treatment Outcome Depends on the Quality of the Living Environment: A Pre-Clinical Investigation in Mice

Igor Branchi; Sara Santarelli; Sara Capoccia; Silvia Poggini; Ivana D’Andrea; Francesca Cirulli; Enrico Alleva

Antidepressants represent the standard treatment for major depression. However, their efficacy is variable and incomplete. A growing number of studies suggest that the environment plays a major role in determining the efficacy of these drugs, specifically of selective serotonin reuptake inhibitors (SSRI). A recent hypothesis posits that the increase in serotonin levels induced by SSRI may not affect mood per se, but enhances neural plasticity and, consequently, renders the individual more susceptible to the influence of the environment. Thus, SSRI administration in a favorable environment would lead to a reduction of symptoms, while in a stressful environment might lead to a worse prognosis. To test this hypothesis, we treated C57BL/6 adult male mice with chronic fluoxetine while exposing them to either (i) an enriched environment, after exposure to a chronic stress period aimed at inducing a depression-like phenotype, or (ii) a stressful environment. Anhedonia, brain BDNF and circulating corticosterone levels, considered endophenotypes of depression, were investigated. Mice treated with fluoxetine in an enriched condition improved their depression-like phenotype compared to controls, displaying higher saccharin preference, higher brain BDNF levels and reduced corticosterone levels. By contrast, when chronic fluoxetine administration occurred in a stressful condition, mice showed a more distinct worsening of the depression-like profile, displaying a faster decrease of saccharin preference, lower brain BDNF levels and increased corticosterone levels. Our findings suggest that the effect of SSRI on depression-like phenotypes in mice is not determined by the drug per se but is induced by the drug and driven by the environment. These findings may be helpful to explain variable effects of SSRI found in clinical practice and to device strategies aimed at enhancing their efficacy by means of controlling environmental conditions.


Neurobiology of Disease | 2015

A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits.

Federica Maccarinelli; Antonella Pagani; Anna Cozzi; Franca Codazzi; Giuseppina Di Giacomo; Sara Capoccia; Stefania Rapino; Dario Finazzi; Letterio S. Politi; Francesca Cirulli; Marco Giorgio; Ottavio Cremona; Fabio Grohovaz; Sonia Levi

Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498–499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron–ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498–499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy.


Frontiers in Behavioral Neuroscience | 2014

Gender-dependent resiliency to stressful and metabolic challenges following prenatal exposure to high-fat diet in the p66Shc−/− mouse

Veronica Bellisario; Alessandra Berry; Sara Capoccia; Carla Raggi; Pamela Panetta; Igor Branchi; Giovanni Piccaro; Marco Giorgio; Pier G. Pelicci; Francesca Cirulli

Metabolic stressful challenges during susceptible time windows, such as fetal life, can have important implications for health throughout life. Deletion of the p66Shc gene in mice leads to reduced oxidative stress (OS), resulting in a healthy and lean phenotype characterized by increased metabolic rate, resistance to high-fat diet (HFD)-induced obesity and reduced emotionality at adulthood. Here we hypothesize that p66Shc−/− (KO) adult offspring might be protected from the detrimental effects induced by maternal HFD administered before and during pregnancy. To test such hypothesis, we fed p66Shc+/+ (WT) and KO females with HFD for 13 weeks starting on 5 weeks of age until delivery and tested adult male and female offspring for their metabolic, neuroendocrine, and emotional profile. Prenatal diet affected stress responses and metabolic features in a gender-dependent fashion. In particular, prenatal HFD increased plasma leptin levels and decreased anxiety-like behavior in females, while increasing body weight, particularly in KO subjects. KO mice were overall characterized by metabolic resiliency, showing a blunted change in glycemia levels in response to glucose or insulin challenges. However, in p66Shc−/− mice, prenatal HFD affected glucose tolerance response in an opposite manner in the two genders, overriding the resilience in males and exacerbating it in females. Finally, KO females were protected from the disrupting effect of prenatal HFD on neuroendocrine response. These findings indicate that prenatal HFD alters the emotional profile and metabolic functionality of the adult individual in a gender-dependent fashion and suggest that exposure to high-caloric food during fetal life is a stressful condition interfering with the developmental programming of the adult phenotype. Deletion of the p66Shc gene attenuates such effects, acting as a protective factor.


Developmental Psychobiology | 2015

Decreased Bdnf expression and reduced social behavior in periadolescent rats following prenatal stress

Alessandra Berry; Pamela Panetta; Alessia Luoni; Veronica Bellisario; Sara Capoccia; Marco Riva; Francesca Cirulli

Prenatal stress (PNS) is a risk factor for the development of neuropsychiatric disorders. This study was aimed at assessing, in a rodent model, changes in gene expression profiles and behavioral output as a result of PNS, during periadolescence, a critical developmental period for the onset of psychopathology. Social behavior was studied in a standardized social interaction paradigm and the expression of Brain-Derived Neurotrophic Factor (Bdnf), a marker of neuronal plasticity, and of inhibitory and excitatory mechanisms (Na(+)-K(+)-2Cl(-) and K(+)-Cl(-) cotransporters ratio, NKCC1/KCC2) was analyzed. Results indicate that PNS reduced Bdnf transcripts while increasing the NKCC1/KCC2 ratio, primarily in the hippocampus. In the prefrontal cortex, changes in Bdnf were found to be gender-dependent. These effects were accompanied by reduced levels of affiliative and investigative social behaviors. Interestingly, interaction with non-stressed subjects was able to improve sociality in PNS rats suggesting that the social environment could be exploited for therapeutic intervention.


Neural Plasticity | 2013

Quality and Timing of Stressors Differentially Impact on Brain Plasticity and Neuroendocrine-Immune Function in Mice

Sara Capoccia; Alessandra Berry; Veronica Bellisario; Davide Vacirca; Elena Ortona; Enrico Alleva; Francesca Cirulli

A growing body of evidence suggests that psychological stress is a major risk factor for psychiatric disorders. The basic mechanisms are still under investigation but involve changes in neuroendocrine-immune interactions, ultimately affecting brain plasticity. In this study we characterized central and peripheral effects of different stressors, applied for different time lengths, in adult male C57BL/6J mice. We compared the effects of repeated (7 versus 21 days) restraint stress (RS) and chronic disruption of social hierarchy (SS) on neuroendocrine (corticosterone) and immune function (cytokines and splenic apoptosis) and on a marker of brain plasticity (brain-derived neurotrophic factor, BDNF ). Neuroendocrine activation did not differ between SS and control subjects; by contrast, the RS group showed a strong neuroendocrine response characterized by a specific time-dependent profile. Immune function and hippocampal BDNF levels were inversely related to hypothalamic-pituitary-adrenal axis activation. These data show a fine modulation of the crosstalk between central and peripheral pathways of adaptation and plasticity and suggest that the length of stress exposure is crucial to determine its final outcome on health or disease.


PLOS ONE | 2015

Behavioral Characterization of Mouse Models of Neuroferritinopathy

Sara Capoccia; Federica Maccarinelli; Barbara Buffoli; Luigi F. Rodella; Ottavio Cremona; Paolo Arosio; Francesca Cirulli

Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing specific therapeutic targets.


Frontiers in Behavioral Neuroscience | 2017

Long-term sex-dependent vulnerability to metabolic challenges in prenatally stressed rats

Pamela Panetta; Alessandra Berry; Veronica Bellisario; Sara Capoccia; Carla Raggi; Alessia Luoni; Linda Longo; Marco Riva; Francesca Cirulli

Prenatal stress (PNS) might affect the developmental programming of adult chronic diseases such as metabolic and mood disorders. The molecular mechanisms underlying such regulations may rely upon long-term changes in stress-responsive effectors such as Brain-Derived Neurotrophic Factor (BDNF) that can affect neuronal plasticity underlying mood disorders and may also play a role in metabolic regulation. Based upon previous data, we hypothesized that PNS might lead to greater vulnerability to an obesogenic challenge experienced at adulthood. In order to investigate our hypothesis, pregnant Sprague-Dawley female rats underwent a chronic procedure of restraint stress during the last week of gestation. The adult offspring were then challenged with a high fat diet (HFD) over 8 weeks and tested for metabolic and emotional endpoints. Moreover, brain specific changes in Bdnf expression levels were also assessed. Overall, HFD resulted in increased caloric intake, insulin resistance, impaired glucose tolerance and higher circulating levels of leptin, while PNS increased the leptin/adiponectin ratio, an index of metabolic risk in adult male subjects. Interestingly, HFD consumption increased anxiety-like behaviors in the Elevated Plus Maze, particularly in males, and this effect was buffered by PNS. Levels of Bdnf were finely modulated by PNS and HFD in a region- and sex-dependent fashion: female offspring overall showed greater plasticity, possibly mediated through increased total Bdnf mRNA expression both in the hippocampus and in the hypothalamus. In conclusion, while the experience of maternal stress during intrauterine life promotes metabolic dysfunction induced by a HFD at adulthood, the interaction between PNS and HFD is positive in male subjects, and in agreement with the match-mismatch hypothesis, resulting in a reduction of anxious behaviors.


Journal of Alzheimer's Disease | 2012

Anti-ATP Synthase Autoantibodies Induce Neuronal Death by Apoptosis and Impair Cognitive Performance in C57BL/6J Mice

Alessandra Berry; Davide Vacirca; Sara Capoccia; Veronica Bellisario; Walter Malorni; Elena Ortona; Francesca Cirulli

Previous studies have suggested a pathogenetic role of autoantibodies (Abs) against ATP synthase (ATPs) in patients with Alzheimers disease (AD). Using a mouse model, we found that intracerebroventricular administration of anti-ATPs-Abs, purified from AD patients, leads to poor cognitive performance and pronounced cell damage in the hippocampus, a brain region specifically involved in learning and memory processes, which is severely affected in AD. Our results are suggestive of a role of anti-ATPs-Abs in the onset and progression of AD and also provide a fruitful model for the study of memory disturbances in neurodegenerative diseases.

Collaboration


Dive into the Sara Capoccia's collaboration.

Top Co-Authors

Avatar

Francesca Cirulli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Alessandra Berry

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Veronica Bellisario

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Carla Raggi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Elena Ortona

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Enrico Alleva

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Pamela Panetta

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Giorgio

European Institute of Oncology

View shared research outputs
Researchain Logo
Decentralizing Knowledge