Carla Raggi
Istituto Superiore di Sanità
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carla Raggi.
Journal of Biological Chemistry | 2009
Isabella Parolini; Cristina Federici; Carla Raggi; Luana Lugini; Simonetta Palleschi; Angelo De Milito; Carolina Coscia; Elisabetta Iessi; Mariantonia Logozzi; Agnese Molinari; Marisa Colone; Massimo Tatti; Massimo Sargiacomo; Stefano Fais
Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies.
Journal of Cell Science | 2006
Alessia Calzolari; Carla Raggi; Silvia Deaglio; Nadia Maria Sposi; Marit Hallvardsdotter Stafsnes; Katia Fecchi; Isabella Parolini; Fabio Malavasi; Cesare Peschle; Massimo Sargiacomo; Ugo Testa
Transferrin receptor 2 (TfR2) possesses a YQRV motif similar to the YTRF motif of transferrin receptor 1 (TfR1) responsible for the internalization and secretion through the endosomal pathway. Raft biochemical dissection showed that TfR2 is a component of the low-density Triton-insoluble (LDTI) plasma membrane domain, able to co-immunoprecipitate with caveolin-1 and CD81, two structural raft proteins. In addition, subcellular fractionation experiments showed that TfR1, which spontaneously undergoes endocytosis and recycling, largely distributed to intracellular organelles, whereas TfR2 was mainly associated with the plasma membrane. Given the TfR2 localization in lipid rafts, we tested its capability to activate cell signalling. Interaction with an anti-TfR2 antibody or with human or bovine holotransferrin showed that it activated ERK1/ERK2 and p38 MAP kinases. Integrity of lipid rafts was required for MAPK activation. Co-localization of TfR2 with CD81, a raft tetraspanin exported through exosomes, prompted us to investigate exosomes released by HepG2 and K562 cells into culture medium. TfR2, CD81 and to a lesser extent caveolin-1, were found to be part of the exosomal budding vesicles. In conclusion, the present study indicates that TfR2 localizes in LDTI microdomains, where it promotes cell signalling, and is exported out of the cells through the exosome pathway, where it acts as an intercellular messenger.
International Journal of Cancer | 2009
Federica Felicetti; Isabella Parolini; Lisabianca Bottero; Katia Fecchi; Maria Cristina Errico; Carla Raggi; Mauro Biffoni; Francesca Spadaro; Michael P. Lisanti; Massimo Sargiacomo; Alessandra Carè
Caveolin‐1 (Cav‐1), a member of the caveolin family, regulates caveolae‐associated signaling proteins, which are involved in many biological processes, including cancer development. Cav‐1 was found to exert a complex and ambiguous role as oncogene or tumor suppressor depending on the cellular microenvironment. Here we investigated Cav‐1 expression and function in a panel of melanomas, finding its expression in all the cell lines. The exception was the primary vertical melanoma cell line, WM983A, characterized by the lack of Cav‐1, and then utilized as a recipient for Cav‐1 gene transduction to address a series of functional studies. The alleged yet controversial role of phospho (Ph)‐Cav‐1 on cell regulation was also tested by transducing the nonphosphorylatable Cav‐1Y14A mutant. Wild‐type Cav‐1, but not mutated Cav‐1Y14A, increased tumorigenicity as indicated by enhanced proliferation, migration, invasion and capacity of forming foci in semisolid medium. Accordingly, Cav‐1 silencing inhibited melanoma cell growth reducing some of the typical traits of malignancy. Finally, we detected a secreted fraction of Cav‐1 associated with cell released microvesicular particles able to stimulate in vitro anchorage independence, migration and invasion in a paracrine/autocrine fashion and, more important, competent to convey metastatic asset from the donor melanoma to the less aggressive recipient cell line. A direct correlation between Cav‐1 levels, the amount of microvesicles released in the culture medium and MMP‐9 expression was also observed.
Biochimica et Biophysica Acta | 2010
Fiorella Malchiodi-Albedi; Valentina Contrusciere; Carla Raggi; Katia Fecchi; Gabriella Rainaldi; Silvia Paradisi; Andrea Matteucci; Maria Teresa Santini; Massimo Sargiacomo; Claudio Frank; Maria Cristina Gaudiano; Marco Diociaiuti
A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid beta oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca(2+) rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.
Proteomics | 2008
Francesco Di Girolamo; Carla Raggi; Cecilia Birago; Elisabetta Pizzi; Marco Lalle; Leonardo Picci; Tomasino Pace; Angela Bachi; Joke de Jong; Chris J. Janse; Andrew P. Waters; Massimo Sargiacomo; Marta Ponzi
Plasmodium parasites, the causal agents of malaria, dramatically modify the infected erythrocyte by exporting parasite proteins into one or multiple erythrocyte compartments, the cytoplasm and the plasma membrane or beyond. Despite advances in defining signals and specific cellular compartments implicated in protein trafficking in Plasmodium‐infected erythrocytes, the contribution of lipid‐mediated sorting to this cellular process has been poorly investigated. In this study, we examined the proteome of cholesterol‐rich membrane microdomains or lipid rafts, purified from erythrocytes infected by the rodent parasite Plasmodium berghei. Besides structural proteins associated with invasive forms, we detected chaperones, proteins implicated in vesicular trafficking, membrane fusion events and signalling. Interestingly, the raft proteome of mixed P. berghei blood stages included proteins encoded by members of a large family (bir) of putative variant antigens potentially implicated in host immune system interactions and targeted to the surface of the host erythrocytes. The generation of transgenic parasites expressing BIR/GFP fusions confirmed the dynamic association of members of this protein family with membrane microdomains. Our results indicated that lipid rafts in Plasmodium‐infected erythrocytes might constitute a route to sort and fold parasite proteins directed to various host cell compartments including the cell surface.
Molecular and Cellular Neuroscience | 2008
Elena Ambrosini; Barbara Serafini; Angela Lanciotti; Fabio Tosini; Flavia Scialpi; Rossana Psaila; Carla Raggi; Francesco Di Girolamo; Tamara C. Petrucci
MLC1 gene mutations have been associated with megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare neurologic disorder in children. The MLC1 gene encodes a membrane protein (MLC1) with unknown function which is mainly expressed in astrocytes. Using a newly developed anti-human MLC1 polyclonal antibody, we have investigated the biochemical properties and localization of MLC1 in cultured astrocytes and brain tissue and searched for evidence of a relationship between MLC1 and proteins of the dystrophin-glycoprotein complex (DGC). Cultured astrocytes express two MLC1 components showing different solubilisation properties and subcellular distribution. Most importantly, we show that the membrane-associated component of MLC1 (60-64 kDa) localizes in astrocytic lipid rafts together with dystroglycan, syntrophin and caveolin-1, and co-fractionates with the DGC in whole rat brain tissue. In the human brain, MLC1 protein is expressed in astrocyte processes and ependymal cells, where it colocalizes with dystroglycan and syntrophin. These data indicate that the DGC may be involved in the organization and function of the MLC1 protein in astrocyte membranes.
Behavioural Brain Research | 2008
Laura Gioiosa; Carla Raggi; Laura Ricceri; Jean-François Jasmin; Philippe G. Frank; Franco Capozza; Michael P. Lisanti; Enrico Alleva; Massimo Sargiacomo; Giovanni Laviola
Neurological phenotypes associated with loss of caveolin 1 (cav-1) (the defining structural protein in caveolar vesicles, which regulate signal transduction and cholesterol trafficking in cells) in mice have been reported recently. In brain, cav-1 is highly expressed in neurons and glia. We investigated emotional and cognitive behavioural domains in mice deficient in cav-1 (CavKO mice). CavKO mice were more anxious and spent more time in self-directed grooming behaviour than wild-type (wt) mice. In a spatial/working memory task, CavKO mice failed to recognize the object displacement, thus showing a spatial memory impairment. CavKO mice showed higher locomotor activity than wt mice, thus suggesting reduced inhibitory function by CNS cholinergic systems. Behavioural response to the cholinergic muscarinic antagonist, scopolamine (2 mg/Kg), was decreased in CavKO mice. Few behavioural sex differences emerged in mice; whereas the sex differences were generally attenuated or even reverted in the null genotype. Our data confirm a distinct behavioural phenotype in CavKO mice and indicate a selective alteration in central cholinergic function.
Neurochemistry International | 2004
Serafina Salvati; Francesco Natali; Lucilla Attorri; Carla Raggi; Antonella Di Biase; Massimo Sanchez
In this study, the role of exogenous fatty acids in the regulation of proteolipid protein (PLP) gene expression was investigated using the following model culture system: C6 glioma cells expressing the green-fluorescent protein (eGFP) driven by different segments of PLP promoter. Eicosapentanoic acid (EPA; 20:5 n-3), but not arachidonic acid (AA; 20:4 n-6), induced a significant increase in medium fluorescence intensity (MFI) determined by fluorescence-activated cell sorting (FACS). The induction of PLP promoter was time-dependent showing maximal activity between 24 and 48 h after EPA exposure. PLP promoter activation was dependent on fatty acid concentration, with maximum activation at 200 microM. Northern blot analysis confirmed the fluorescence data in C6 cells incubated with EPA. Furthermore, this treatment increased the adenylyl cyclase-cyclic AMP (cAMP) levels and the mitogen-activated protein kinase (MAPK) activation in C6 cells. PLP promoter activity was inhibited by pre-treatment with H89 (protein kinase A (PKA) inhibitor), but not with PD98059 (MAPK inhibitor), suggesting that EPA stimulates the expression of PLP via cAMP-mediated pathways.
Neurobiology of Disease | 2010
Angela Lanciotti; Maria Stefania Brignone; Serena Camerini; Barbara Serafini; Gianfranco Macchia; Carla Raggi; Paola Molinari; Marco Crescenzi; Marco Musumeci; Massimo Sargiacomo; Tamara C. Petrucci; Elena Ambrosini
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare congenital leukodystrophy caused by mutations in the MLC1 gene that encodes a membrane protein of unknown function. In the brain MLC1 protein is mainly expressed in astrocyte end-feet, localizes in lipid rafts and associates with the dystrophin glycoprotein complex (DGC). Using pull-down and co-fractionation assays in cultured human and rat astrocytes, we show here that MLC1 intracellular domains pull-down the DGC proteins syntrophin, dystrobrevin, Kir4.1 and caveolin-1, the structural protein of caveolae, thereby supporting a role for DGC and caveolar structures in MLC1 function. By immunostaining and subcellular fractionation of cultured rat or human astrocytes treated with agents modulating caveolin-mediated trafficking, we demonstrate that MLC1 is also expressed in intracellular vesicles and endoplasmic reticulum and undergoes caveolae/raft-mediated endocytosis. Inhibition of endocytosis, cholesterol lowering and protein kinases A- and C-mediated MLC1 phosphorylation favour the expression of membrane-associated MLC1. Because pathological mutations prevent MLC1 membrane expression, the identification of substances regulating MLC1 intracellular trafficking is potentially relevant for the therapy of MLC.
Frontiers in Behavioral Neuroscience | 2014
Veronica Bellisario; Alessandra Berry; Sara Capoccia; Carla Raggi; Pamela Panetta; Igor Branchi; Giovanni Piccaro; Marco Giorgio; Pier G. Pelicci; Francesca Cirulli
Metabolic stressful challenges during susceptible time windows, such as fetal life, can have important implications for health throughout life. Deletion of the p66Shc gene in mice leads to reduced oxidative stress (OS), resulting in a healthy and lean phenotype characterized by increased metabolic rate, resistance to high-fat diet (HFD)-induced obesity and reduced emotionality at adulthood. Here we hypothesize that p66Shc−/− (KO) adult offspring might be protected from the detrimental effects induced by maternal HFD administered before and during pregnancy. To test such hypothesis, we fed p66Shc+/+ (WT) and KO females with HFD for 13 weeks starting on 5 weeks of age until delivery and tested adult male and female offspring for their metabolic, neuroendocrine, and emotional profile. Prenatal diet affected stress responses and metabolic features in a gender-dependent fashion. In particular, prenatal HFD increased plasma leptin levels and decreased anxiety-like behavior in females, while increasing body weight, particularly in KO subjects. KO mice were overall characterized by metabolic resiliency, showing a blunted change in glycemia levels in response to glucose or insulin challenges. However, in p66Shc−/− mice, prenatal HFD affected glucose tolerance response in an opposite manner in the two genders, overriding the resilience in males and exacerbating it in females. Finally, KO females were protected from the disrupting effect of prenatal HFD on neuroendocrine response. These findings indicate that prenatal HFD alters the emotional profile and metabolic functionality of the adult individual in a gender-dependent fashion and suggest that exposure to high-caloric food during fetal life is a stressful condition interfering with the developmental programming of the adult phenotype. Deletion of the p66Shc gene attenuates such effects, acting as a protective factor.