Sara Ekvall
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sara Ekvall.
Journal of Medical Genetics | 2008
Anna-Maja Nyström; Sara Ekvall; Erna Berglund; Maria Björkqvist; Gunnar Braathen; Karel Duchén; Henrik Enell; Eva Holmberg; Ulrika Holmlund; Mia Olsson-Engman; Göran Annerén; Marie-Louise Bondeson
Background: Noonan syndrome (NS) and cardio-facio-cutaneous syndrome (CFC) are related disorders associated with disrupted RAS/RAF/MEK/ERK signalling. NS, characterised by facial dysmorphism, congenital heart defects and short stature, is caused by mutations in the genes PTPN11, SOS1, KRAS and RAF1. CFC is distinguished from NS by the presence of ectodermal abnormalities and more severe mental retardation in addition to the NS phenotype. The genetic aetiology of CFC was recently assigned to four genes: BRAF, KRAS, MEK1 and MEK2. Methods: A comprehensive mutation analysis of BRAF, KRAS, MEK1, MEK2 and SOS1 in 31 unrelated patients without mutations in PTPN11 is presented. Results: Mutations were identified in seven patients with CFC (two in BRAF, one in KRAS, one in MEK1, two in MEK2 and one in SOS1). Two mutations were novel: MEK1 E203Q and MEK2 F57L. The SOS1 E433K mutation, identified in a patient diagnosed with CFC, has previously been reported in patients with NS. In one patient with NS, we also identified a mutation, BRAF K499E, that has previously been reported in patients with CFC. We thus suggest involvement of BRAF in the pathogenesis of NS also. Conclusions: Taken together, our results indicate that the molecular and clinical overlap between CFC and NS is more complex than previously suggested and that the syndromes might even represent allelic disorders. Furthermore, we suggest that the diagnosis should be refined to, for example, NS–PTPN11-associated or CFC–BRAF-associated syndromes after the genetic defect has been established, as this may affect the prognosis and treatment of the patients.
Acta Paediatrica | 2009
Anna-Maja Nyström; Sara Ekvall; Bo Strömberg; Gerd Holmström; Ann-Charlotte Thuresson; Göran Annerén; Marie-Louise Bondeson
Aim: The clinical overlap among Noonan syndrome (NS), cardio‐facio‐cutaneous (CFC), LEOPARD and Costello syndromes as well as Neurofibromatosis type 1 is extensive, which complicates the process of diagnosis. Further genotype–phenotype correlations are required to facilitate future diagnosis of these patients. Therefore, investigations of the genetic cause of a severe phenotype in a patient with NS and the presence of multiple café‐au‐lait spots (CAL) spots in the patient and four members of the family were performed.
Ophthalmic Genetics | 2011
Elisabeth Wittström; Sara Ekvall; Patrik Schatz; Marie-Louise Bondeson; Vesna Ponjavic; Sten Andréasson
Purpose: To describe morphological and functional changes in a single patient with multifocal Best vitelliform macular dystrophy (BVMD) and to perform a genotype/phenotype correlation. Methods: The proband with multifocal BVMD and three of her family members were examined with electrooculography (EOG), full-field electroretinography (full-field ERG), multifocal electroretinography (mfERG) and optical coherence tomography (OCT). Genomic DNA was screened for mutation in the BEST1 gene by DNA sequencing analysis. Results: The proband was observed regularly during a follow-up period of 4 years. Full-field ERG demonstrated reduced and delayed responses of both rods and cones. OCT demonstrated intra- and subretinal fluid which seemed to fluctuate with periods of stress, similar to that seen in chronic central serous chorioretinopathy. Two distinct heterozygous BEST1 mutations were identified in the proband, the recurrent p.R141H mutation and the p.P233A mutation. Heterozygous p.R141H mutations were also identified in two family members, while p.P233A was a de novo mutation. Abnormal EOG findings were observed in both the proband and in the carriers of p.R141H. Heterozygous carriers showed delayed implicit times in a- and b-waves of combined total rod and cone full-field ERG responses. Conclusions: The p.R141H mutation is frequently seen together with multifocal vitelliform retinopathy and biallelic mutations in BEST1. Our results show that carriers of the p.R141H mutation are clinically unaffected but present with abnormal EOG and full-field ERG findings. A patient with biallelic mutations of the BEST1 gene, causing multifocal BVMD with progressive, widespread functional disturbance of the retina, confirmed by full-field and mfERG is described.
American Journal of Medical Genetics Part A | 2011
Sara Ekvall; L. Hagenäs; Judith Allanson; Göran Annerén; Marie-Louise Bondeson
Noonan syndrome (NS) is a heterogeneous disorder caused by activating mutations in the RAS‐MAPK signaling pathway. It is associated with variable clinical expression including short stature, congenital heart defect, unusual pectus deformity, and typical facial features and the inheritance is autosomal dominant. Here, we present a clinical and molecular characterization of a patient with Noonan‐like syndrome with loose anagen hair phenotype and additional features including mild psychomotor developmental delay, osteoporosis, gingival hyperplasia, spinal neuroblastoma, intrathoracic extramedullary hematopoiesis, and liver hemangioma. Mutation analysis of PTPN11, SOS1, RAF1, KRAS, BRAF, MEK1, MEK2, NRAS, and SHOC2 was conducted, revealing a co‐occurrence of two heterozygous previously identified mutations in the index patient. The mutation SHOC2 c.4A > G; p.Ser2Gly represents a de novo mutation, whereas, PTPN11 c.1226G > C; p.Gly409Ala was inherited from the mother and also identified in the brother. The mother and the brother present with some NS manifestations, such as short stature, delayed puberty, keratosis pilaris, café‐au‐lait spots, refraction error (mother), and undescended testis (brother), but no NS facial features, supporting the notion that the PTPN11 p.Gly409Ala mutation leads to a relatively mild phenotype. We propose that, the atypical phenotype of the young woman with NS reported here is an additive effect, where the PTPN11 mutation acts as a modifier. Interestingly, co‐occurrence of RAS‐MAPK mutations has been previously identified in a few patients with variable NS or neurofibromatosis‐NS phenotypes. Taken together, the results suggest that co‐occurrence of mutations or modifying loci in the RAS‐MAPK pathway may contribute to the clinical variability observed among NS patients.
Journal of Medical Genetics | 2015
Maria Wilbe; Sara Ekvall; Karin Eurenius; Katharina Ericson; Olivera Casar-Borota; Joakim Klar; Niklas Dahl; Adam Ameur; Göran Annerén; Marie-Louise Bondeson
Background Fetal akinesia deformation sequence syndrome (FADS, OMIM 208150) is characterised by decreased fetal movement (fetal akinesia) as well as intrauterine growth restriction, arthrogryposis, and developmental anomalies (eg, cystic hygroma, pulmonary hypoplasia, cleft palate, and cryptorchidism). Mutations in components of the acetylcholine receptor (AChR) pathway have previously been associated with FADS. Methods and results We report on a family with recurrent fetal loss, where the parents had five affected fetuses/children with FADS and one healthy child. The fetuses displayed no fetal movements from the gestational age of 17 weeks, extended knee joints, flexed hips and elbows, and clenched hands. Whole exome sequencing of one affected fetus and the parents was performed. A novel homozygous frameshift mutation was identified in muscle, skeletal receptor tyrosine kinase (MuSK), c.40dupA, which segregated with FADS in the family. Haplotype analysis revealed a conserved haplotype block suggesting a founder mutation. MuSK (muscle-specific tyrosine kinase receptor), a component of the AChR pathway, is a main regulator of neuromuscular junction formation and maintenance. Missense mutations in MuSK have previously been reported to cause congenital myasthenic syndrome (CMS) associated with AChR deficiency. Conclusions To our knowledge, this is the first report showing that a mutation in MuSK is associated with FADS. The results support previous findings that CMS and/or FADS are caused by complete or severe functional disruption of components located in the AChR pathway. We propose that whereas milder mutations of MuSK will cause a CMS phenotype, a complete loss is lethal and will cause FADS.
American Journal of Medical Genetics Part A | 2014
Sara Ekvall; Kerstin Sjörs; Anders Jonzon; Mauno Vihinen; Göran Annerén; Marie-Louise Bondeson
Neurofibromatosis‐Noonan syndrome (NFNS) is a rare condition with clinical features of both neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). All three syndromes belong to the RASopathies, which are caused by dysregulation of the RAS‐MAPK pathway. The major gene involved in NFNS is NF1, but co‐occurring NF1 and PTPN11 mutations in NFNS have been reported. Knowledge about possible involvement of additional RASopathy‐associated genes in NFNS is, however, very limited. We present a comprehensive clinical and molecular analysis of eight affected individuals from three unrelated families displaying features of NF1 and NFNS. The genetic etiology of the clinical phenotypes was investigated by mutation analysis, including NF1, PTPN11, SOS1, KRAS, NRAS, BRAF, RAF1, SHOC2, SPRED1, MAP2K1, MAP2K2, and CBL. All three families harbored a heterozygous NF1 variant, where the first family had a missense variant, c.5425C>T;p.R1809C, the second family a recurrent 4bp‐deletion, c.6789_6792delTTAC;p.Y2264Tfs*6, and the third family a splice‐site variant, c.2991‐1G>A, resulting in skipping of exon 18 and an in‐frame deletion of 41 amino acids. These NF1 variants have all previously been reported in NF1 patients. Surprisingly, both c.6789_6792delTTAC and c.2991‐1G>A are frequently associated with NF1, but association to NFNS has, to our knowledge, not previously been reported. Our results support the notion that NFNS represents a variant of NF1, genetically distinct from NS, and is caused by mutations in NF1, some of which also cause classical NF1. Due to phenotypic overlap between NFNS and NS, we propose screening for NF1 mutations in NS patients, preferentially when café‐au‐lait spots are present.
European Journal of Medical Genetics | 2010
Anna-Maja Nyström; Sara Ekvall; Ann-Charlotte Thuresson; Ellen Denayer; Eric Legius; Masood Kamali-Moghaddam; Bengt Westermark; Göran Annerén; Marie-Louise Bondeson
The RAS-MAPK syndromes are a group of clinically and genetically related disorders caused by dysregulation of the RAS-MAPK pathway. A member of this group of disorders, Noonan syndrome (NS), is associated with several different genes within the RAS-MAPK pathway. To date, mutations in PTPN11, SOS1, KRAS, RAF1 and SHOC2 are known to cause NS and a small group of patients harbour mutations in BRAF, MEK1 or NRAS. The majority of the mutations are predicted to cause an up-regulation of the pathway; hence they are gain-of-function mutations. Despite recent advances in gene identification in NS, the genetic aetiology is still unknown in about 1/4 of patients. To investigate the contribution of gene dosage imbalances of RAS-MAPK-related genes to the pathogenesis of NS, a multiplex ligation-dependent probe amplification (MLPA) assay was developed. Two probe sets were designed for seven RAS-MAPK-syndrome-related candidate genes: PTPN11, SOS1, RAF1, KRAS, BRAF, MEK1 and MEK2. The probe sets were validated in 15 healthy control individuals and in glioma tumour cell lines. Subsequently, 44 NS patients negative for mutations in known NS-associated genes were screened using the two probe sets. The MLPA results for the patients revealed no gene dosage imbalances. In conclusion, the present results exclude copy number variation of PTPN11, SOS1, RAF1, KRAS, BRAF, MEK1 and MEK2 as a common pathogenic mechanism of NS. The validated and optimised RAS-MAPK probe sets presented here enable rapid high throughput screening of further patients with RAS-MAPK syndromes.
Human Molecular Genetics | 2017
Sanna Gudmundsson; Maria Wilbe; Sara Ekvall; Adam Ameur; Nicola Cahill; Ludmil B. Alexandrov; Marie Virtanen; Maritta Hellström Pigg; Anders Vahlquist; Hans Törmä; Marie-Louise Bondeson
Abstract Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G > A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. To our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.
BMC Medical Genetics | 2015
Sara Ekvall; Maria Wilbe; Jovanna Dahlgren; Eric Legius; Arie van Haeringen; Otto Westphal; Göran Annerén; Marie-Louise Bondeson
Meeting Online Planner and Abstract Seacrh | 2015
Maria Wilbe; Sara Ekvall; Jovanna Dahlgren; Eric Legius; A Van Haeringen; Otto Westphal; Göran Annerén; Marie-Louise Bondeson