Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Letizia Maria Eramo is active.

Publication


Featured researches published by Sara Letizia Maria Eramo.


The Journal of Neuroscience | 2013

Noise-Induced Hearing Loss (NIHL) as a Target of Oxidative Stress-Mediated Damage: Cochlear and Cortical Responses after an Increase in Antioxidant Defense

Anna Rita Fetoni; Paola De Bartolo; Sara Letizia Maria Eramo; Rolando Rolesi; Fabiola Paciello; Romana Fato; Gaetano Paludetti; Laura Petrosini; Diana Troiani

This study addresses the relationship between cochlear oxidative damage and auditory cortical injury in a rat model of repeated noise exposure. To test the effect of increased antioxidant defenses, a water-soluble coenzyme Q10 analog (Qter) was used. We analyzed auditory function, cochlear oxidative stress, morphological alterations in auditory cortices and cochlear structures, and levels of coenzymes Q9 and Q10 (CoQ9 and CoQ10, respectively) as indicators of endogenous antioxidant capability. We report three main results. First, hearing loss and damage in hair cells and spiral ganglion was determined by noise-induced oxidative stress. Second, the acoustic trauma altered dendritic morphology and decreased spine number of II–III and V–VI layer pyramidal neurons of auditory cortices. Third, the systemic administration of the water-soluble CoQ10 analog reduced oxidative-induced cochlear damage, hearing loss, and cortical dendritic injury. Furthermore, cochlear levels of CoQ9 and CoQ10 content increased. These findings indicate that antioxidant treatment restores auditory cortical neuronal morphology and hearing function by reducing the noise-induced redox imbalance in the cochlea and the deafferentation effects upstream the acoustic pathway.


Neuroscience | 2010

In vivo protective effect of ferulic acid against noise-induced hearing loss in the guinea-pig

Anna Rita Fetoni; Cesare Mancuso; Sara Letizia Maria Eramo; Massimo Ralli; Roberto Piacentini; Eugenio Barone; Gaetano Paludetti; Diana Troiani

Ferulic acid (FA) is a phenolic compound whose neuroprotective activity was extensively studied in vitro. In this study, we provided functional in vivo evidence that FA limits noise-induced hearing loss. Guinea-pigs exposed to acoustic trauma for 1 h exhibited a significant impairment in auditory function; this injury was evident as early as 1 day from noise exposure and persisted over 21 days. Ferulic acid (150 mg/kg i.p. for 4 days) counteracted noise-induced hearing loss at days 1, 3, 7 and 21 from noise exposure. The improvement of auditory function by FA was paralleled by a significant reduction in oxidative stress, apoptosis and increase in hair cell viability in the organ of Corti. Interestingly in the guinea-pig cochleae, the neuroprotective effect of FA was functionally related not only to its scavenging ability in the peri-traumatic period but also to the up-regulation of the cytoprotective enzyme heme oxygenase-1 (HO-1); in fact, FA-induced improvement of auditory function was counteracted by the HO inhibitor zinc-protoporphyrin-IX and paralleled the time-course of HO-1 induction over 3-7 days. These results confirm the antioxidant properties of FA as free-radical scavenger and suggest a role of HO-1 as an additional mediator against noise-induced ototoxicity.


Free Radical Biology and Medicine | 2015

Rosmarinic acid up-regulates the noise-activated Nrf2/HO-1 pathway and protects against noise-induced injury in rat cochlea.

Anna Rita Fetoni; Fabiola Paciello; Rolando Rolesi; Sara Letizia Maria Eramo; Cesare Mancuso; Diana Troiani; Gaetano Paludetti

Noise-induced hearing loss depends on progressive increase of reactive oxygen species and lipoperoxidative damage in conjunction with the imbalance of antioxidant defenses. The redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in the regulation of cellular defenses against oxidative stress, including heme oxygenase-1 (HO-1) activation. In this work we describe a link between cochlear oxidative stress damage, induced by noise exposure, and the activation of the Nrf2/HO-1 pathway. In our model, noise induces superoxide production and overexpression of the lipid peroxidation marker 4-hydroxy-nonenals (4-HNE). To face the oxidative stress, the endogenous defense system is activated as well, as shown by the slight activation of superoxide dismutases (SODs). In addition, we observed the activation of the Nrf2/HO-1 pathway after noise exposure. Nrf2 appears to promote the maintenance of cellular homeostasis under stress conditions. However, in this model the endogenous antioxidant system fails to counteract noise-induced cell damage and its activation is not effective enough in preventing cochlear damage. The herb-derived phenol rosmarinic acid (RA) attenuates noise-induced hearing loss, reducing threshold shift, and promotes hair cell survival. In fact, RA enhances the endogenous antioxidant defenses, as shown by decreased superoxide production, reduced expression of 4-HNE, and up-regulation of SODs. Interestingly, RA potentiates the Nrf2/HO-1 signaling pathway, as shown by immunohistochemical and Western blot analyses. Thus, protective effects of RA are associated with the induction/activation of the Nrf2-ARE signaling pathway in addition to RA direct scavenging capability.


British Journal of Cancer | 2015

Molecular targets for anticancer redox chemotherapy and cisplatin-induced ototoxicity: the role of curcumin on pSTAT3 and Nrf-2 signalling.

Anna Rita Fetoni; Fabiola Paciello; Daniele Mezzogori; Rolando Rolesi; Sara Letizia Maria Eramo; Gaetano Paludetti; Diana Troiani

Background:In oncology, an emerging paradigm emphasises molecularly targeted approaches for cancer prevention and therapy and the use of adjuvant chemotherapeutics to overcome cisplatin limitations. Owing to their safe use, some polyphenols, such as curcumin, modulate important pathways or molecular targets in cancers. This paper focuses on curcumin as an adjuvant molecule to cisplatin by analysing its potential implications on the molecular targets, signal transducer and activator of transcription 3 (STAT3) and NF-E2 p45-related factor 2 (Nrf-2), in tumour progression and cisplatin resistance in vitro and the adverse effect ototoxicity in vivo.Methods:The effects of curcumin and/or cisplatin treatment have been evaluated in head and neck squamous cell carcinoma as well as in a rat model of cisplatin-induced ototoxicity by using immunofluorescence, western blot, and functional and morphological analysis.Results:This study demonstrates that curcumin attenuates all stages of tumour progression (survival, proliferation) and, by targeting pSTAT3 and Nrf-2 signalling pathways, provides chemosensitisation to cisplatin in vitro and protection from its ototoxic adverse effects in vivo.Conclusions:These results indicate that curcumin can be used as an efficient adjuvant to cisplatin cancer therapy. This treatment strategy in head and neck cancer could mediate cisplatin chemoresistance by modulating therapeutic targets (STAT3 and Nrf2) and, at the same time, reduce cisplatin-related ototoxic adverse effects.


Biochimica et Biophysica Acta | 2014

Time evolution of noise induced oxidation in outer hair cells: Role of NAD(P)H and plasma membrane fluidity

Giuseppe Maulucci; Diana Troiani; Sara Letizia Maria Eramo; Fabiola Paciello; Maria Vittoria Podda; Gaetano Paludetti; Massimiliano Papi; Alessandro Maiorana; Valentina Palmieri; Marco De Spirito; Anna Rita Fetoni

BACKGROUND Noise exposure impairs outer hair cells (OHCs). The common basis for OHC dysfunction and loss by acoustic over-stimulation is represented by reactive oxygen species (ROS) overload that may affect the membrane structural organization through generation of lipid peroxidation. METHODS Here we investigated in OHC different functional zones the mechanisms linking metabolic functional state (NAD(P)H intracellular distribution) to the generation of lipid peroxides and to the physical state of membranes by two photon fluorescence microscopy. RESULTS In OHCs of control animals, a more oxidized NAD(P)H redox state is associated to a less fluid plasma membrane structure. Acoustic trauma induces a topologically differentiated NAD(P)H oxidation in OHC rows, which is damped between 1 and 6h. Peroxidation occurs after ~4h from noise insult, while ROS are produced in the first 0.2h and damage cells for a period of time after noise exposure has ended (~7.5h) when a decrease of fluidity of OHC plasma membrane occurs. OHCs belonging to inner rows, characterized by a lower metabolic activity with respect to other rows, show less severe metabolic impairment. CONCLUSIONS Our data indicate that plasma membrane fluidity is related to NAD(P)H redox state and lipid peroxidation in hair cells. GENERAL SIGNIFICANCE Our results could pave the way for therapeutic intervention targeting the onset of redox umbalance.


Otology & Neurotology | 2014

Curcuma longa (curcumin) decreases in vivo cisplatin-induced ototoxicity through heme oxygenase-1 induction.

Anna Rita Fetoni; Sara Letizia Maria Eramo; Fabiola Paciello; Rolando Rolesi; Maria Vittoria Podda; Diana Troiani; Gaetano Paludetti

Hypothesis To investigate whether curcumin may have in vivo protective effects against cisplatin ototoxicity by its direct scavenger activity and/or by curcumin-mediated upregulation of HO-1. Background Cisplatin-induced ototoxicity is a major dose-limiting side effect in anticancer chemotherapy. A protective approach to decrease cisplatin ototoxicity without compromising its therapeutic efficacy remains a critical goal for anticancer therapy. Recent evidences indicate that curcumin exhibits antioxidant, anti-inflammatory, and chemosensitizer activities. Methods In male adult Wistar rats, a curcumin dose of 200 mg/kg, selected from a dose-response curve, was injected 1 hour before cisplatin administration and once daily for the following 3 days. A single dose of cisplatin (16 mg/kg) was administered intraperitoneally. Rats were divided as follows: 1) control, 2) curcumin control, 3) vehicle control, 4) cisplatin, 5) cisplatin+ vehicle, and 6) curcumin+cisplatin. ABRs were measured before and at Days 3 and 5 after cisplatin administration. Rhodamine-phalloidin staining, 4-hydroxy-2-nonenal and heme-oxigenase-1 immunostainings, and Western blot analyses were performed to assess and quantify OHC loss, lipid peroxidation, and the endogenous response to cisplatin-induced damage and to curcumin protection. Results Curcumin treatment attenuated hearing loss induced by cisplatin, increased OHC survival, decreased 4-HNE expression, and increased HO-1 expression. Conclusion This preclinical study demonstrates that systemic curcumin attenuates ototoxicity and provides molecular evidence for a role of HO-1 as an additional mediator in attenuating cisplatin-induced damage.


Acta Oto-laryngologica | 2012

Efficacy of different routes of administration for Coenzyme Q10 formulation in noise-induced hearing loss: Systemic versus transtympanic modality

Anna Rita Fetoni; Diana Troiani; Sara Letizia Maria Eramo; Rolando Rolesi; Gaetano Paludetti Troiani

Abstract Conclusion: The effectiveness of a coenzyme Q10 formulation, Q-ter, given via transtympanic injection is interesting for the future application of this minimally invasive procedure in the treatment of reactive oxygen species (ROS)-induced hearing loss. Objective: We focused on antioxidant therapy in noise-induced hearing loss (NIHL). Our study was designed to evaluate the effectiveness of Q-ter for different schedules of drug administration to establish the best modality for treatment. Methods: Rats were exposed to acoustic trauma (10 kHz at 120 dB for 60 min) and received Q-ter according to two modalities: systemic (Q-ter 100 mg/kg for 4 days 1 h before and 3 days post noise exposure) and transtympanic (Q-ter 20 and 40% concentration 1 h before noise exposure). Auditory brainstem response (ABR), immunohistochemical and morphological studies were performed. Results: Q-ter administration significantly decreased NIHL at day 21 from noise exposure. The improvement of auditory function by Q-ter was paralleled by a significant reduction in oxidative stress. The transtympanic and systemic routes of drug administration showed a similar degree of protection.


Acta Oto-laryngologica | 2011

Therapeutic window for ferulic acid protection against noise-induced hearing loss in the guinea pig

Anna Rita Fetoni; Sara Letizia Maria Eramo; Diana Troiani; Gaetano Paludetti

Abstract Conclusion: Our results are in agreement with the general idea that natural antioxidants achieve their best cytoprotective capacity if given before and soon after the stressor. Objective: We focused on ferulic acid (FA, 4-hydroxy 3-methoxycinnamic acid), a phenolic compound that is known to exhibit antioxidant properties. Our study was designed to evaluate the effectiveness of FA for different schedules of treatment to establish the ‘therapeutic window’ for FA protection. Methods: Guinea pigs were exposed to acoustic trauma (6 kHz at 120 dB for 60 min) and received a total dose of 600 mg/kg of FA. Group I, noise control; group II, noise + FA (150 mg/kg) for 4 days starting 24 h post exposure; group III, noise + FA (60 mg/kg) 1 h before and 9 days post exposure; group IV, noise + FA (60 mg/kg) given 3 days before and 7 days post exposure; group V, noise + FA (150 mg/kg) 1 h before and 3 days post noise exposure. Auditory brainstem response (ABR) test and immunohistochemical and morphological studies were performed. Results: Group V had significantly decreased noise-induced hearing loss at day 21 from noise exposure. The improvement of auditory function by FA was paralleled by a significant reduction in oxidative stress marker. The other schedules of drug administration showed a minor degree of protection.


Frontiers in Cellular Neuroscience | 2014

Grafting and early expression of growth factors from adipose-derived stem cells transplanted into the cochlea, in a Guinea pig model of acoustic trauma.

Anna Rita Fetoni; Wanda Lattanzi; Sara Letizia Maria Eramo; Marta Barba; Fabiola Paciello; Chiara Moriconi; Rolando Rolesi; Fabrizio Michetti; Diana Troiani; Gaetano Paludetti

Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Loads of evidence indicate adipose-derived stem cells (ASCs) as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features. This study was aimed at identifying the path of in vivo cell migration and expression of trophic growth factors, upon ASCs transplantation into the cochlea, following noise-induced injury. ASCs were isolated in primary culture from the adipose tissue of a guinea pig, transduced using a viral vector to express the green fluorescent protein, and implanted into the scala tympani of deafened animals. Auditory function was assessed 3 and 7 days after surgery. The expression of trophic growth factors was comparatively analyzed using real-time PCR in control and noise-injured cochlear tissues. Immunofluorescence was used to assess the in vivo localization and expression of trophic growth factors in ASCs and cochleae, 3 and 7 days following homologous implantation. ASC implantation did not modify auditory function. ASCs migrated from the perilymphatic to the endolymphatic compartment, during the analyzed time course. Upon noise exposure, the expression of chemokine ligands and receptors related to the PDGF, VEGF, and TGFbeta pathways, increased in the cochlear tissues, possibly guiding in vivo cell migration. Immunofluorescence confirmed the increased expression, which appeared to be further strengthened by ASCs’ implantation. These results indicated that ASCs are able to migrate at the site of tissue damage and express trophic factors, upon intracochlear implantation, providing an original proof of principle, which could pave the way for further developments of ASC-based treatments of deafness.


Scientific Reports | 2016

The redox protein p66(shc) mediates cochlear vascular dysfunction and transient noise-induced hearing loss.

Anna Rita Fetoni; Sara Letizia Maria Eramo; Fabiola Paciello; Rolando Rolesi; Daniela Samengo; Gaetano Paludetti; Diana Troiani; Giovambattista Pani

p66shc, a member of the ShcA protein family, is essential for cellular response to oxidative stress, and elicits the formation of mitochondrial Reactive Oxygen Species (ROS), thus promoting vasomotor dysfunction and inflammation. Accordingly, mice lacking the p66 isoform display increased resistance to oxidative tissue damage and to cardiovascular disorders. Oxidative stress also contributes to noise-induced hearing loss (NIHL); we found that p66shc expression and serine phosphorylation were induced following noise exposure in the rat cochlea, together with markers of oxidative stress, inflammation and ischemia as indicated by the levels of the hypoxic inducible factor (HIF) and the vascular endothelial growth factor (VEGF) in the highly vascularised cochlear lateral region and spiral ganglion. Importantly, p66shc knock-out (p66 KO) 126 SvEv adult mice were less vulnerable to acoustic trauma with respect to wild type controls, as shown by preserved auditory function and by remarkably lower levels of oxidative stress and ischemia markers. Of note, decline of auditory function observed in 12 month old WT controls was markedly attenuated in p66KO mice consistent with delayed inner ear senescence. Collectively, we have identified a pivotal role for p66shc -induced vascular dysfunction in a common pathogenic cascade shared by noise-induced and age-related hearing loss.

Collaboration


Dive into the Sara Letizia Maria Eramo's collaboration.

Top Co-Authors

Avatar

Anna Rita Fetoni

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Diana Troiani

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Gaetano Paludetti

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Fabiola Paciello

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Rolando Rolesi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Maria Vittoria Podda

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Claudio Grassi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Cesare Mancuso

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Maiorana

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge