Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Marchiani is active.

Publication


Featured researches published by Sara Marchiani.


Molecular and Cellular Endocrinology | 2009

Nongenomic activation of spermatozoa by steroid hormones: Facts and fictions

Elisabetta Baldi; Michaela Luconi; Monica Muratori; Sara Marchiani; Lara Tamburrino; Gianni Forti

The rapid effects of steroids on spermatozoa have been demonstrated for the first time two decades ago. Progesterone (P), which is present throughout the female genital tract with peaks of levels in the cumulus matrix surrounding the oocyte, stimulates several sperm functions, including hyperactivation and acrosome reaction. These effects are mediated by an extranuclear pathway, as P stimulates an influx of calcium, the tyrosine phosphorylation of sperm proteins and other signalling cascades in a rapid manner. Whether these effects are receptor mediated and which receptors mediate these effects are still a matter of discussion despite all the efforts of the scientific community aimed at identifying them during the last 20 years. Although responsiveness to P is related to sperm fertilizing ability, the physiological role of P during the process of fertilization is discussed, and recent evidence points for a role of the steroid as a chemotactic agent for sperm. A similar situation applies for estrogens (E), which have been shown to induce direct effects on sperm by an extranuclear pathway. In particular, E appear to decrease acrosome reaction in response to P, exerting a role in ensuring an appropriate timing for sperm exocytosis during the process of fertilization.


Biology of Reproduction | 2005

Tyrosine Phosphorylation of the A Kinase Anchoring Protein 3 (AKAP3) and Soluble Adenylate Cyclase Are Involved in the Increase of Human Sperm Motility by Bicarbonate

Michaela Luconi; I. Porazzi; Pietro Ferruzzi; Sara Marchiani; Gianni Forti; Elisabetta Baldi

Abstract Mammalian testicular spermatozoa are immotile, thus, to reach the oocyte, they need to acquire swimming ability under the control of different factors acting during the sperm transit through the epididymis and the female genital tract. Although bicarbonate is known to physiologically increase motility by stimulating soluble adenylate cyclase (sAC) activity of mammalian spermatozoa, no extensive studies in human sperm have been performed yet to elucidate the additional molecular mechanisms involved. In this light, we investigated the effect of in vitro addition of bicarbonate to human spermatozoa on the main intracellular signaling pathways involved in regulation of motility, namely, intracellular cAMP production and protein tyrosine phosphorylation. Bicarbonate effects were compared with those of the phosphatidyl-inositol-3 kinase inhibitor, LY294002, previously demonstrated to be a pharmacological stimulus for sperm motility. Bicarbonate addition to spermatozoa results in a significant increase in sperm motility as well as in several hyperactivation parameters. This stimulatory effect of bicarbonate and LY294002 is mediated by an increase in cAMP production and tyrosine phosphorylation of the A kinase anchoring protein, AKAP3. The specificity of bicarbonate effects was confirmed by inhibition with 4,4′-di-isothiocyanostilbene-2,2′-disulfonic acid. We remark that, in human spermatozoa, bicarbonate acts primarily through activation of sAC to stimulate tyrosine phosphorylation of AKAP3 and sperm motility because both effects are blunted by the sAC inhibitor 2OH-estradiol. In conclusion, our data provide the first evidence that bicarbonate stimulates human sperm motility and hyperactivation through activation of sAC and tyrosine phosphorylation of AKAP3, finally leading to an increased recruitment of PKA to AKAP3.


Asian Journal of Andrology | 2012

Mechanisms and clinical correlates of sperm DNA damage

Lara Tamburrino; Sara Marchiani; Margarita Montoya; Francesco Elia Marino; Ilaria Natali; Marta Cambi; Gianni Forti; Elisabetta Baldi; Monica Muratori

Among the different DNA anomalies that can be present in the male gamete, DNA fragmentation is the most frequent, particularly in infertile subjects. There is now consistent evidence that a sperm containing fragmented DNA can be alive, motile, morphologically normal and able to fertilize an oocyte. There is also evidence that the oocyte is able to repair DNA damage; however, the extent of this repair depends on the type of DNA damage present in the sperm, as well as on the quality of the oocyte. Thus, it is important to understand the possible consequences of sperm DNA fragmentation (SDF) for embryo development, implantation, pregnancy outcome and the health of progeny conceived, both naturally and by assisted reproductive technology (ART). At present, data on the consequences of SDF for reproduction are scarce and, in many ways, inconsistent. The differences in study conclusions might result from the different methods used to detect SDF, the study design and the inclusion criteria. Consequently, it is difficult to decide whether SDF testing should be carried out in fertility assessment and ART. It is clear that there is an urgent need for the standardisation of the methods and for additional clinical studies on the impact of SDF on ART outcomes.


Frontiers in Bioscience | 2006

Origin and biological significance of DNA fragmentation in human spermatozoa.

Monica Muratori; Sara Marchiani; Mario Maggi; G. Forti; Elisabetta Baldi

The occurrence of DNA fragmentation in mammalian spermatozoa was identified in 1993. In human, sperm DNA fragmentation is particularly relevant in subfertile patients (i.e, those subjects more likely to be treated by assisted reproductive techniques). Thus, concerns have been raised about the possibility that sperm with DNA fragmentation may be involved in the process of fertilization, in particular when invasive techniques (such as intracytoplasmatic sperm injection) are applied. Knowledge of the mechanisms responsible for generation of DNA strand breaks may thus help in disclosing and possibly identifying new therapies for the treatment of male infertility. However, the mechanisms involved in generating sperm DNA anomalies are far from being clarified. In this review, we summarize and critically analyze the main current theories that explain generation of DNA fragmentation in spermatozoa: abortive apoptosis (anomalies in apoptosis that occur normally during spermatogenesis), problems in packaging of chromatin (mainly anomalies in histone to protamine substitution) and generation of reactive oxygen species (that may occur at any level during spermatogenesis, sperm maturation and transit in the male genital tract).


Human Reproduction | 2008

Nuclear staining identifies two populations of human sperm with different DNA fragmentation extent and relationship with semen parameters

Monica Muratori; Sara Marchiani; Lara Tamburrino; V. Tocci; P. Failli; Gianni Forti; Elisabetta Baldi

BACKGROUND Sperm DNA fragmentation is a possible predictive parameter for male fertility status. The occurrence of M540 bodies in semen of subfertile subjects affects flow cytometric investigations in sperm. We set up a new method to evaluate DNA fragmentation excluding M540 bodies. METHODS DNA fragmentation was evaluated by flow cytometry in semen of 75 subjects both by terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labeling (TUNEL, traditional method) and by double staining with TUNEL and propidium iodide (PI, new method). RESULTS The use of the new method revealed that TUNEL underestimates sperm DNA fragmentation in flow cytometry and showed two sperm populations stained with low (PI(dim)) and high (PI(br)) avidity for PI. The PI(dim) population is entirely composed of DNA fragmented sperm and its incidence shows highly significant negative correlations with morphology, motility, sperm count and concentration (respectively, r = -0.51, -0.52, -0.46 and -0.32, n = 75). DNA fragmentation in the PI(br) sperm population is independent from semen quality. CONCLUSIONS The correlations between sperm DNA breakage and semen quality previously reported are mainly driven by the occurrence of the PI(dim) population. DNA fragmented sperm in this population are more likely to have poorer morphology, reduced motility and thus a reduced chance to fertilize an oocyte than DNA damaged sperm in PI(br) population. Distinguishing between the two types of sperm DNA fragmentation appears to be important in clinical investigations.


Molecular Medicine | 2015

Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress.

Monica Muratori; Lara Tamburrino; Sara Marchiani; Marta Cambi; Biagio Olivito; Chiara Azzari; Gianni Forti; Elisabetta Baldi

Sperm DNA fragmentation (sDF) represents a threat to male fertility, human reproduction and the health of the offspring. The causes of sDF are still unclear, even if apoptosis, oxidative assault and defects in chromatin maturation are hypothesized. Using multicolor flow cytometry and sperm sorting, we challenged the three hypothesized mechanisms by simultaneously evaluating sDF and signs of oxidative damage (8-hydroxy, 2′-deoxyguanosine (8-OHdG) and malondialdehyde (MDA)), apoptosis (caspase activity and cleaved poly(ADP-ribose) polymerase (cPARP)) and sperm immaturity (creatine phosphokinase (CK) and excess of residual histones). Active caspases and c-PARP were concomitant with sDF in a high percentage of spermatozoa (82.6% ± 9.1% and 53.5% ± 16.4%, respectively). Excess of residual histones was significantly higher in DNA-fragmented sperm versus sperm without DNA fragmentation (74.8% ± 17.5% and 37.3% ± 16.6%, respectively, p < 0.005), and largely concomitant with active caspases. Conversely, oxidative damage was scarcely concomitant with sDF in the total sperm population, at variance with live sperm, where 8-OHdG and MDA were clearly associated to sDF. In addition, most live cells with active caspase also showed 8-OHdG, suggesting activation of apoptotic pathways in oxidative-injured live cells. This is the first investigation on the origin of sDF directly evaluating the simultaneous presence of the signs of the hypothesized mechanisms with DNA breaks at the single cell level. The results indicate that the main pathway leading to sperm DNA breaks is a process of apoptosis, likely triggered by an impairment of chromatin maturation in the testis and by oxidative stress during the transit in the male genital tract. These findings are highly relevant for clinical studies on the effects of drugs on sDF and oxidative stress in infertile men and for the development of new therapeutic strategies.


Human Reproduction | 2014

The CatSper calcium channel in human sperm: relation with motility and involvement in progesterone-induced acrosome reaction

Lara Tamburrino; Sara Marchiani; Federico Minetti; Gianni Forti; Monica Muratori; Elisabetta Baldi

STUDY QUESTION Does CatSper have a role in the achievement of human sperm motility and in the Progesterone (P)-induced acrosome reaction (AR)? SUMMARY ANSWER CatSper1 expression is associated with human sperm progressive motility and the P-induced AR; it may have a role in the pathogenesis of asthenozoospermia. WHAT IS KNOWN ALREADY Knockout mice for any of the Catsper family genes fail to acquire hyperactivated motility and are infertile. CatSper channels mediate P-induced Ca(2+) influx in human sperm. The role of CatSper in human sperm hyperactivated/activated motility and in asthenospermia is less clear. A few men with CatSper mutations have been described but the phenotype regarding sperm motility has not been well established. STUDY DESIGN, SIZE, DURATION The effects of two Catsper inhibitors, NNC55-0396 (NNC, 10 and 20 µM) and Mibefradil (Mib, 30 and 40 µM), were tested on human sperm motility parameters and the P-induced AR. Catsper1 protein expression was evaluated in unselected and swim-up selected sperm samples and in sperm from normo- and astheno-zoospermic subjects. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen sample kinematic parameters were analysed by a CASA system. A fluorescent-labelled lectin was used to evaluate P-induced AR in live sperm by fluorescence microscopy. CatSper1 protein expression was determined by western blot analysis and by flow cytometry. Intracellular calcium concentrations ([Ca(2+)]i) were evaluated by a spectrofluorimetric method following sperm loading with the calcium-sensitive probe fura 2/AM. MAIN RESULTS AND THE ROLE OF CHANCE CatSper1 protein was localized in the tail of human sperm. CatSperI expression was higher in swim up selected than unselected sperm both when measured by western blot or by flow cytometry (52.7 ± 15.8% versus 27.2 ± 9.01%, n = 7, P < 0.01). Basal and P-stimulated [Ca(2+)]i were significantly higher in swim-up selected compared with unselected sperm. CatSper1 expression (western blot analysis) was found to be decreased in sperm from asthenozoospermic (n = 10) compared with those from normozoospermic (n = 9) men (intensity values relative to β-actin: 244.4 ± 69.3 versus 385.8 ± 139.5, P < 0.01). A positive correlation was found between CatSper1 protein expression and the percentage of sperm with progressive motility (n = 19, r = 0.59, P = 0.007). NNC (10 µM) and Mib (30 µM) significantly reduced the percentage of sperm with progressive motility and several kinematic parameters but did not affect the percentage of hyperactivated sperm. Their effects were the same whether they were added to swim-up selected and capacitated sperm or were added to the swim-up medium. Mib was found to have a slight but significant effect on sperm viability at both concentrations tested. P-stimulated AR was significantly reduced by both inhibitors (P < 0.05). Overall, our results indicate that, in human sperm, CatSper channel expression and function are associated with progressive motility and may be involved in the pathogenesis of asthenozoospermia. LIMITATIONS, REASONS FOR CAUTION In general, studies evaluating the effect of inhibitors have the limitation of the specificity of the molecules. We show here that Mib may have toxic effect on human sperm. Although most of the parameters have been evaluated in live sperm, the toxic effect could have contributed to the observed decreases. More studies are necessary to evaluate further the role of CatSper1 in asthenozoospermia. WIDER IMPLICATIONS OF THE FINDINGS In view of the involvement in P-induced AR and of the evidence of a role in the pathogenesis of astenozoospermia, CatSper channels may represent a promising target for the development of new drugs for the treatment of male infertility and for non-hormonal contraception. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from Ministry of University and Scientific Research (Prin project to E.B. and FIRB project to S.M) and Regione Toscana (to G.F.). The authors have no conflicts of interest to declare.


Journal of Andrology | 2010

Small Variations in Crucial Steps of TUNEL Assay Coupled to Flow Cytometry Greatly Affect Measures of Sperm DNA Fragmentation

Monica Muratori; Lara Tamburrino; Valentina Tocci; Antonietta Costantino; Sara Marchiani; Claudia Giachini; Ilaria Laface; Csilla Krausz; Maria Cristina Meriggiola; Gianni Forti; Elisabetta Baldi

Techniques for assessing sperm DNA damage are numerous and various. There are 2 main types of assay: direct and indirect. The former directly detects the amount of sperm DNA damage, whereas the latter reveals the effects of an exogenous insult on sperm chromatin. In addition, even considering the same type of technique, different strategies to reveal or quantify sperm DNA damage, or both, are used. Finally, these techniques, except for sperm chromatin structure assay (SCSA), lack standardized protocols to which all users can adhere to minimize interlaboratory variations. In this study, we investigated the effects of some of the many ways the terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labeling (TUNEL) assay is performed when measuring sperm DNA fragmentation by flow cytometry. In addition, by using an established procedure, we determined the precision of the technique by calculating intra-assay coefficients of variation (CVs). We found that concentration of the fixative, the time of storage of fixed samples, the fluorochrome used to label DNA breaks, and the method used to analyze flow cytometric data all greatly affect the measures of sperm DNA fragmentation. In particular, we found that treatment with paraformaldehyde produced additional damage in most samples, suggesting that TUNEL also can be considered an indirect assay when performed in semen samples treated with such a fixative reagent. We also showed that 2 different methods used to analyze data yielded results that, albeit correlating, were different and associated differently to semen quality. On the contrary, the TUNEL assay, as measured here, showed low intraassay CVs, resulting in a quite precise technique when performed in established conditions.


Steroids | 2004

The androgen receptor associates with the epidermal growth factor receptor in androgen-sensitive prostate cancer cells.

Lorella Bonaccorsi; Monica Muratori; Vinicio Carloni; Sara Marchiani; Lucia Formigli; Gianni Forti; Elisabetta Baldi

Many recent evidences indicate that androgen-sensitive prostate cancer cells have a lower malignant phenotype that is in particular characterized by a reduced migration and invasion. We previously demonstrated that expression of androgen receptor (AR) by transfection of the androgen-independent prostate cancer cell line PC3 decreases invasion and adhesion of these cells (PC3-AR) through modulation of alpha6beta4 integrin expression. The treatment with the synthetic androgen R1881 further reduced invasion of the cells without, however, modifying alpha6beta4 expression on the cell surface, suggesting an interference with the invasion process in response to EGF. We investigated whether the presence of the AR could affect EGF receptor (EGFR)-mediated signaling in response to EGF by evaluating autotransphosphorylation of the receptor as well as activation of downstream signalling pathways. Immunoprecipitation studies demonstrated a reduction of EGF-induced tyrosine phosphorylation of EGFR in PC3-AR cells. In addition, EGF-stimulated PI3K activity, a key signalling pathway for invasion of these cells, was decreased in PC3-AR cells and further reduced by treatment with R1881, indicating decreased functionality of EGFR. An interaction between EGFR and AR has been demonstrated by immunoconfocal and co-immunoprecipitation analysis in PC3-AR cells, suggesting a possible interference of AR on EGFR signalling by interaction of the two proteins. In conclusion, our results suggest that the expression of AR by transfection in PC3 cells confers a less malignant phenotype by interfering with EGFR autophosphorylation and signalling in response to EGF leading to invasion through a mechanism involving an interaction between AR and EGFR.


Ppar Research | 2008

Rosiglitazone Inhibits Adrenocortical Cancer Cell Proliferation by Interfering with the IGF-IR Intracellular Signaling

Giulia Cantini; Adriana Lombardi; Elisabetta Piscitelli; Giada Poli; E. Ceni; Sara Marchiani; Tonino Ercolino; Andrea Galli; Mario Serio; Massimo Mannelli; Michaela Luconi

Rosiglitazone (RGZ), a thiazolidinedione ligand of the peroxisome proliferator-activated receptor (PPAR)-γ, has been recently described as possessing antitumoral properties. We investigated RGZ effect on cell proliferation in two cell line models (SW13 and H295R) of human adrenocortical carcinoma (ACC) and its interaction with the signaling pathways of the activated IGF-I receptor (IGF-IR). We demonstrate a high expression of IGF-IR in the two cell lines and in ACC. Cell proliferation is stimulated by IGF-I in a dose- and time-dependent manner and is inhibited by RGZ. The analysis of the main intracellular signaling pathways downstream of the activated IGF-IR, phosphatidyl inositol 3-kinase (PI3K)-Akt, and extracellular signal-regulated kinase (ERK1/2) cascades reveals that RGZ rapidly interferes with the Akt and ERK1/2 phosphorylation/activation which mediates IGF-I stimulated proliferation. In conclusion, our results suggest that RGZ exerts an inhibitory effect on human ACC cell proliferation by interfering with the PI3K/Akt and ERK1/2 signaling pathways downstream of the activated IGF-IR.

Collaboration


Dive into the Sara Marchiani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Cambi

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Forti

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge