Sara Morón
University of Adelaide
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sara Morón.
Geological Society of America Bulletin | 2012
Camilo Montes; Augusto V. Cardona; Rory R. McFadden; Sara Morón; C.A. Silva; Sergio A. Restrepo-Moreno; Diego A. Ramírez; N. Hoyos; J. Wilson; David W. Farris; Germán Bayona; Carlos Jaramillo; Victor A. Valencia; J. Bryan; José-Abel Flores
The rise of the Isthmus of Panama, linked to a number of climatic, paleoceanographic, and biological events, has been studied mostly from indirect, often distal, geochemical and biotic evidence. We have upgraded existing geologic mapping in central Panama with more than 2000 field stations, over 40 petrographic analyses, and more than 30 new geochronological and thermochronological analyses. This data set suggests that the isthmus was an uninterrupted chain above sea level from late Eocene until at least late Miocene times. The basement complex of central Panama is a folded-faulted, ∼3-km-thick arc sequence, intruded by granitoid bodies and onlapped by mildly deformed upper Eocene and Oligocene strata. Six U/Pb zircon ages in the granitoids–along with published geochronological data—reveal intense late Paleocene to middle Eocene magmatism (58–39 Ma), a temporary cessation of magmatic activity between 38 and 27 Ma, and renewed magmatism between 25 and 15 Ma in a position ∼75 km south of the former magmatic axis. Thermochronological analyses in zircon (eight U-Th/He ages), and in apatite crystals (four U-Th/He ages and nine fission-track ages) obtained from a subset of 58–54 Ma granitoid bodies record a concordant Lutetian-age (47–42 Ma) cooling from ∼200 °C to ∼70 °C in ∼5 m.y., and cooling below ∼40 °C between 12 and 9 Ma. Cooling is linked to exhumation by an angular unconformity that separates the deformed basement complex below from mildly deformed, upper Eocene to Oligocene terrestrial to shallow-marine strata above. Exhumation and erosion of the basement complex are independently confirmed by lower Miocene strata that have a detrital zircon signature that closely follows the central Panama basement complex age distribution. These results greatly restrict the width and depth of the strait separating southern Central America from South America, and challenge the widely accepted notion that the Central American Seaway closed in late Pliocene time, when the ice age began.
Science | 2010
Carlos Jaramillo; Diana Ochoa; Lineth Contreras; Mark Pagani; Humberto Carvajal-Ortiz; Lisa M. Pratt; Srinath Krishnan; Agustín Cardona; Millerlandy Romero; Luis Quiroz; Guillermo Rodriguez; Milton Rueda; Felipe de la Parra; Sara Morón; Walton Green; Germán Bayona; Camilo Montes; Oscar Quintero; Rafael Ramirez; Germán Mora; Stefan Schouten; Hermann Bermudez; Rosa Navarrete; Francisco Parra; Mauricio Alvarán; Jose Osorno; James L. Crowley; Victor A. Valencia; Jeffrey D. Vervoort
Hot Tropical Explosion The Paleocene-Eocene Thermal Maximum (PETM), 55 million years ago, was a unique episode of rapid global warming (∼5°C), often used as an ancient analog for future global climate change. Climate alteration during the PETM has been extensively studied in the marine realm, and from a few temperate to polar terrestrial localities, but little is known about how the tropics responded to the high temperatures and high levels of CO2. Using evidence from pollen analysis, Jaramillo et al. (p. 957) show that rapid tropical forest diversification occurred during the PETM, without plant extinction or regional aridity. Unexpectedly, diversity seemed to increase at higher temperatures, contradicting previous assumptions that tropical flora will succumb if temperatures become excessive. Palynology shows that tropical forests persisted under conditions of rapid climate warming 55 million years ago. Temperatures in tropical regions are estimated to have increased by 3° to 5°C, compared with Late Paleocene values, during the Paleocene-Eocene Thermal Maximum (PETM, 56.3 million years ago) event. We investigated the tropical forest response to this rapid warming by evaluating the palynological record of three stratigraphic sections in eastern Colombia and western Venezuela. We observed a rapid and distinct increase in plant diversity and origination rates, with a set of new taxa, mostly angiosperms, added to the existing stock of low-diversity Paleocene flora. There is no evidence for enhanced aridity in the northern Neotropics. The tropical rainforest was able to persist under elevated temperatures and high levels of atmospheric carbon dioxide, in contrast to speculations that tropical ecosystems were severely compromised by heat stress.
Journal of Geophysical Research | 2012
Camilo Montes; Germán Bayona; Agustín Cardona; David M. Buchs; C. A. Silva; Sara Morón; N. Hoyos; Diego A. Ramírez; Carlos Jaramillo; Victor A. Valencia
Closure of the Central American seaway was a local tectonic event with potentially global biotic and environmental repercussions. We report geochronological (six U/Pb LA-ICP-MS zircon ages) and geochemical (19 XRF and ICP-MS analyses) data from the Isthmus of Panama that allow definition of a distinctive succession of plateau sequences to subduction-related protoarc to arc volcaniclastic rocks intruded by Late Cretaceous to middle Eocene intermediate plutonic rocks (67.6 ± 1.4 Ma to 41.1 ± 0.7 Ma). Paleomagnetic analyses (24 sites, 192 cores) in this same belt reveal large counterclockwise vertical-axis rotations (70.9° ± 6.7°), and moderate clockwise rotations (between 40° ± 4.1° and 56.2° ± 11.1°) on either side of an east-west trending fault at the apex of the Isthmus (Rio Gatun Fault), consistent with Isthmus curvature. An Oligocene-Miocene arc crosscuts the older, deformed and segmented arc sequences, and shows no significant vertical-axis rotation or deformation. There are three main stages of deformation: 1) left-lateral, strike-slip offset of the arc (∼100 km), and counterclockwise vertical-axis rotation of western arc segments between 38 and 28 Ma; 2) clockwise rotation of central arc segments between 28 and 25 Ma; and 3) orocline tightening after 25 Ma. When this reconstruction is placed in a global plate tectonic framework, and published exhumation data is added, the Central American seaway disappears at 15 Ma, suggesting that by the time of northern hemisphere glaciation, deep-water circulation had long been severed in Central America.
Journal of Paleontology | 2010
Bruce J. MacFadden; Michael Xavier Kirby; Aldo F. Rincon; Camilo Montes; Sara Morón; Nikki Strong; Carlos Jaramillo
Abstract Recently collected specimens of the extinct tayassuine peccary “Cynorca” occidentale (and another indeterminant tayassuid) are described from new excavations along the southern reaches of the Panama Canal. Fossil peccaries were previously unknown from Panama, and these new tayassuid specimens therefore add to the extinct mammalian biodiversity in this region. “Cynorca” occidentale occurs in situ in the Centenario Fauna (new name) from both the upper part of the Culebra Formation and overlying Cucaracha Formation, thus encompassing a stratigraphic interval that includes both of these formations and the previously described and more restricted Gaillard Cut Local Fauna. “Cynorca” occidentale is a primitive member of the clade that gives rise to modern tayassuines in the New World. Diagnostic characters for “C.” occidentale include a retained primitive M1, reduced M3, and shallow mandible, and this species is small relative to most other extinct and modern tayassuine peccaries. Based on the closest biostratigraphic comparisions (Maryland, Florida, Texas, and California), the presence of “C.” occidentale indicates an interval of uncertain duration within the early Hemingfordian (He1) to early Barstovian (Ba 1) land mammal ages (early to middle Miocene) for the Centenario Fauna, between about 19 and 14.8 million years ago. Based on what is known of the modern ecology of tayassuines and previous paleoecological interpretations for Panama, “C.” occidentale likely occupied a variety of environments, ranging from forested to open country habitat mosaics and fed on the diverse array of available plants.
Australian Journal of Earth Sciences | 2016
John W. Counts; Franklin Rarity; R.B. Ainsworth; Kathryn J. Amos; Tessa I. Lane; Sara Morón; J. Trainor; C. Valenti; Rachel A. Nanson
ABSTRACT The type section of the late Ediacaran (ca 565 Ma) Bonney Sandstone in South Australia provides an opportunity to interpret a succession of Precambrian clastic sediments using physical sedimentary structures, lithologies and stacking patterns. Facies models, sequence stratigraphic analysis, and process-based architectural classification of depositional elements were used to interpret depositional environments for a series of disconformity-bounded intervals. This study is the first detailed published work on the Bonney Sandstone, and provides additional context for other Wilpena Group sediments, including the overlying Rawnsley Quartzite and its early metazoan fossils. Results show that the ∼300 m-thick section studied here shows a progressive change from shallow marine to fluvially dominated sediments, having been deposited in storm-dominated shelf and lower shoreface environments, lower in the section, and consisting primarily of stacked channel sands, in a proximal deltaic environment near the top. Based on the degree of influence of wave, tidal or fluvial depositional processes, shallow marine sediments can be classified into beach, mouth bar, delta lobe and channel depositional elements, which can be used to assist in predicting sandbody geometries when only limited information is available. Sediments are contained within a hierarchical series of regressive, coarsening-upward sequences, which are in turn part of a larger basin-scale sequence that likely reflects normal regression and filling of accommodation throughout a highstand systems tract. Paleogeographic reconstructions suggest the area was part of a fluvially dominated clastic shoreline; this is consistent with previous reconstructions that indicate the area was on the western edge of the basin adjacent to the landward Gawler Craton. This research fills in a knowledge gap in the depositional history of a prominent unit in the Adelaide Rift Complex and is a case study in the interpretation of ancient deposits that are limited in extent or lacking diagnostic features.
Archive | 2014
Carlos Jaramillo; Enrique Moreno; Valentina Ramírez; Silane A. F. da Silva-Caminha; Atria de la Barrera; Adara de la Barrera; Carlos Sánchez; Sara Morón; Fabiany Herrera; Jaime Escobar; Rebecca Koll; Steven R. Manchester; Natalia Hoyos
Palaeogeography, Palaeoclimatology, Palaeoecology | 2013
Sara Morón; David L. Fox; Joshua M. Feinberg; Carlos Jaramillo; Germán Bayona; Camilo Montes; Jonathan I. Bloch
Geología Colombiana | 2010
Germán Bayona; Omar Camilo Montenegro Castillo; Agustín Cardona Molina; Carlos Jaramillo; Felipe Lamus; Sara Morón; Luis Quiroz; María C. Ruíz; Victor A. Valencia; Mauricio Parra; Daniel F. Stockli
Geomorphology | 2017
Sara Morón; Douglas A. Edmonds; Kathryn J. Amos
Geological Society of America Bulletin | 2017
Sara Morón; Kathryn J. Amos; Douglas A. Edmonds; Tobias H. D. Payenberg; Xun Sun; Mark Thyer