Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Novak is active.

Publication


Featured researches published by Sara Novak.


Chemosphere | 2012

Effect of ingested titanium dioxide nanoparticles on the digestive gland cell membrane of terrestrial isopods.

Janez Valant; Damjana Drobne; Sara Novak

The aim of this study was to find out whether ingested titanium dioxide nanoparticles (nano-TiO(2)) cause cell membrane damage by direct contact or by lipid peroxidation. We assessed lipid peroxidation and digestive gland cell membrane stability of animals fed on food dosed with nano-TiO(2). Conventional toxicity measures were completed to determine if cellular effects are propagated to higher levels of biological complexity. An invertebrate model organism (Porcellio scaber, Isopoda, Crustacea) was fed with food containing nanosized TiO(2) and the result confirmed that at higher exposure concentrations after 3 d exposure, nano-TiO(2) destabilized cell membranes but lipid peroxidation was not detected. Oxidative stress as evidenced by lipid peroxidation was observed at longer exposure durations and high exposure doses. These data suggest that cell membranes are destabilized by direct interactions between nanoparticles and cell membrane, not solely via oxidative stress.


Environment International | 2016

An interlaboratory comparison of nanosilver characterisation and hazard identification: harmonising techniques for high quality data

Anita Jemec; Anne Kahru; Annegret Potthoff; Damjana Drobne; Margit Heinlaan; Steffi Böhme; Mark Geppert; Sara Novak; Kristin Schirmer; Rohit Rekulapally; Shashi Singh; Villem Aruoja; Mariliis Sihtmäe; Katre Juganson; Aleksandr Kakinen; Dana Kühnel

Within the FP7 EU project NanoValid a consortium of six partners jointly investigated the hazard of silver nanoparticles (AgNPs) paying special attention to methodical aspects that are important for providing high-quality ecotoxicity data. Laboratories were supplied with the same original stock dispersion of AgNPs. All partners applied a harmonised procedure for storage and preparation of toxicity test suspensions. Altogether ten different toxicity assays with a range of environmentally relevant test species from different trophic levels were conducted in parallel to AgNP characterisation in the respective test media. The paper presents a comprehensive dataset of toxicity values and AgNP characteristics like hydrodynamic sizes of AgNP agglomerates and the share (%) of Ag(+)-species (the concentration of Ag(+)-species in relation to the total measured concentration of Ag). The studied AgNP preparation (20.4±6.8 nm primary size, mean total Ag concentration 41.14 mg/L, 46-68% of soluble Ag(+)-species in stock, 123.8±12.2 nm mean z-average value in dH2O) showed extreme toxicity to crustaceans Daphnia magna, algae Pseudokirchneriella subcapitata and zebrafish Danio rerio embryos (EC50<0.01 mg total Ag/L), was very toxic in the in vitro assay with rainbow trout Oncorhynchus mykiss gut cells (EC50: 0.01-1 mg total Ag/L); toxic to bacteria Vibrio fischeri, protozoa Tetrahymena thermophila (EC50: 1-10 mg total Ag/L) and harmful to marine crustaceans Artemia franciscana (EC50: 10-100 mg total Ag/L). Along with AgNPs, also the toxicity of AgNO3 was analyzed. The toxicity data revealed the same hazard ranking for AgNPs and AgNO3 (i.e. the EC50 values were in the same order of magnitude) proving the importance of soluble Ag(+)-species analysis for predicting the hazard of AgNPs. The study clearly points to the need for harmonised procedures for the characterisation of NMs. Harmonised procedures should consider: (i) measuring the AgNP properties like hydrodynamic size and metal ions species in each toxicity test medium at a range of concentrations, and (ii) including soluble metal salt control both in toxicity testing as well as in Ag(+)-species measurements. The present study is among the first nanomaterial interlaboratory comparison studies with the aim to improve the hazard identification testing protocols.


Environmental Science & Technology | 2013

Cellular Internalization of Dissolved Cobalt Ions from Ingested CoFe2O4 Nanoparticles: In Vivo Experimental Evidence

Sara Novak; Damjana Drobne; Miha Golobič; Jernej Zupanc; Tea Romih; Alessandra Gianoncelli; M. Kiskinova; Burkhard Kaulich; Primož Pelicon; Primož Vavpetič; Luka Jeromel; Nina Ogrinc; Darko Makovec

With a model invertebrate animal, we have assessed the fate of magnetic nanoparticles in biologically relevant media, i.e., digestive juices. The toxic potential and the internalization of such nanoparticles by nontarget cells were also examined. The aim of this study was to provide experimental evidence on the formation of Co(2+), Fe(2+), and Fe(3+) ions from CoFe₂O₄ nanoparticles in the digestive juices of a model organism. Standard toxicological parameters were assessed. Cell membrane stability was tested with a modified method for measurement of its quality. Proton-induced X-ray emission and low energy synchrotron radiation X-ray fluorescence were used to study internalization and distribution of Co and Fe. Co(2+) ions were found to be more toxic than nanoparticles. We confirmed that Co(2+) ions accumulate in the hepatopancreas, but Fe(n+) ions or CoFe₂O₄ nanoparticles are not retained in vivo. A model biological system with a terrestrial isopod is suited to studies of the potential dissolution of ions and other products from metal-containing nanoparticles in biologically complex media.


Environmental Toxicology and Chemistry | 2012

CELL MEMBRANE INTEGRITY AND INTERNALIZATION OF INGESTED TiO2 NANOPARTICLES BY DIGESTIVE GLAND CELLS OF A TERRESTRIAL ISOPOD

Sara Novak; Damjana Drobne; Janez Valant; Živa Pipan-Tkalec; Primož Pelicon; Primož Vavpetič; Nataša Grlj; Ingrid Falnoga; Darja Mazej; Maja Remskar

The present study was motivated by the paucity of reports on cellular internalization of ingested titanium dioxide (TiO(2)) nanoparticles (nano-TiO(2)). The model invertebrate (Porcellio scaber, Isopoda, Crustacea) was exposed to food dosed with nano-TiO(2) containing 100, 1,000, 3,000, or 5,000 µg nano-TiO(2) per gram of food. After 14 d of exposure, the amount of Ti in the entire body was analyzed by inductively coupled plasma-mass spectrometry, and elemental analyses of tissue cross sections were performed by particle induced X-ray emission. In addition, a series of toxicological markers including feeding parameters, weight change, and survival, as well as cytotoxic effects such as digestive gland cell membrane stability, were monitored. Internalization of ingested nano-TiO(2) by the isopods digestive gland epithelial cells was shown to depend on cell membrane integrity. Cell membranes were found to be destabilized by TiO(2) particles, and at higher extracellular concentrations of nano-TiO(2), the nanoparticles were internalized.


Journal of Nanomaterials | 2012

Internalization of consumed TiO 2 nanoparticles by a model invertebrate organism

Sara Novak; Damjana Drobne; Janez Valant; Primož Pelicon

There is little in vivo data concerning the fate of ingested TiO2 nanoparticles (nano-TiO2). We report here experiments aimed at assessing if ingested nano-TiO2 accumulates in the digestive gland epithelium or are internalized elsewhere in the body of the terrestrial isopod crustaceans. The animals (Porcellio scaber, Isopoda, Crustacea) fed for 3, 7, or 14 days on food dosed with 100 or 1000 µg nano-TiO2 showed no evidence of internalization of Ti measured by microparticle-induced X-ray emission method. The effect of ingested nanoparticles was measured by conventional toxicity measures such as feeding rate, weight change, andmortality and did not indicate any toxicity. However, cell membrane of digestive glands, measured with a modified method for assessing cell membrane stability, was affected already after 3 days of exposure to 1000 µg nano-TiO2 per gram dry weight of food indicating cytotoxic potential of ingested nanoparticles. Our results confirmed hypothesis on low toxic potential and no internalization of consumed TiO2 nanoparticles by a model invertebrate organism. However, cytological marker unequivocally indicated adverse effect of ingested nano-TiO2. We conclude that the isopod model system could be used for studying the fate and effect of ingested nanoparticles.


Science of The Total Environment | 2015

Bioavailability of cobalt and iron from citric-acid-adsorbed CoFe2O4 nanoparticles in the terrestrial isopod Porcellio scaber

Tea Romih; Barbara Drašler; Anita Jemec; Damjana Drobne; Sara Novak; Miha Golobič; Darko Makovec; Robert Susič; Ksenija Kogej

The aim of this study was to determine whether citric acid adsorbed onto cobalt ferrite (CoFe2O4) nanoparticles (NPs) influences the bioavailability of their constituents Co and Fe. Dissolution of Co and Fe was assessed by two measures: (i) in aqueous suspension using chemical analysis, prior to application onto the food of test organisms; and (ii) in vivo, measuring the bioavailability in the model terrestrial invertebrate (Porcellio scaber, Isopoda, Crustacea). The isopods were exposed to citric-acid-adsorbed CoFe2O4 NPs for 2 weeks, and tissue accumulation of Co and Fe was assessed. This was compared to pristine CoFe2O4 NPs, and CoCl2 and Fe(III) salts as positive controls. The combined data shows that citric acid enhances free metal ion concentration from CoFe2O4 NPs in aqueous suspension, although in vivo, very similar amounts of assimilated Co were found in isopods exposed to both types of NPs. Therefore, evaluation of the dissolution in suspension by chemical means is not a good predictor of metal assimilation of this model organism; body assimilation of Co and Fe is rather governed by the physiological capacity of P. scaber for the uptake of these metals. Moreover, we propose that citric acid, due to its chelating properties, may hinder the uptake of Co that dissolves from citric-acid-adsorbed CoFe2O4 NPs, if citric acid is present in sufficient quantity.


ZooKeys | 2012

Prolonged feeding of terrestrial isopod (Porcellio scaber, Isopoda, Crustacea) on TiO (2) nanoparicles. Absence of toxic effect.

Sara Novak; Damjana Drobne; Anja Menard

Abstract Nanoparticles of titanium dioxide are one of most widely used nanomaterials in different products in everyday use and in industry, but very little is known about their effects on non- target cells and tissues. Terrestrial isopods were exposed to food dosed with nano-TiO2 to give final nominal concentration 1000 and 2000 µg TiO2/g dry weight of food. The effects of ingested nano-TiO2 on the model invertebrate Porcellio scaber (Isopoda, Crustacea) after short-term (3 and 7 days) and prolonged (14 and 28 days) dietary exposure was assessed by conventional toxicity measures such as feeding rate, weight change and mortality. Cell membrane destabilization was also investigated. No severe toxicity effects were observed after 3, 7, 14 or 28 days of dietary exposure to nano-TiO2, but some animals, particularly those exposed to lower concentrations of nanoparticles, had severely destabilized digestive cell membranes. It was concluded that strong destabilization of the cell membrane was sporadic, and neither concentration- nor time-related. Further research is needed to confirm this sporadic toxic effect of nanoparticles.


Nanotoxicology | 2016

FTIR microscopy reveals distinct biomolecular profile of crustacean digestive glands upon subtoxic exposure to ZnO nanoparticles

Tea Romih; Anita Jemec; Sara Novak; Lisa Vaccari; Paolo Ferraris; Martin Šimon; Monika Kos; Robert Susič; Ksenija Kogej; Jernej Zupanc; Damjana Drobne

Abstract Biomolecular profiling with Fourier-Transform InfraRed Microscopy was performed to distinguish the Zn2+-mediated effects on the crustacean (Porcellio scaber) digestive glands from the ones elicited by the ZnO nanoparticles (NPs). The exposure to ZnO NPs or ZnCl2 (1500 and 4000 µg Zn/g of dry food) activated different types of metabolic pathways: some were found in the case of both substances, some only in the case of ZnCl2, and some only upon exposure to ZnO NPs. Both the ZnO NPs and the ZnCl2 increased the protein (∼1312 cm−1; 1720–1485 cm−1/3000–2830 cm−1) and RNA concentration (∼1115 cm−1). At the highest exposure concentration of ZnCl2, where the effects occurred also at the organismal level, some additional changes were found that were not detected upon the ZnO NP exposure. These included changed carbohydrate (most likely glycogen) concentrations (∼1043 cm−1) and the desaturation of cell membrane lipids (∼3014 cm−1). The activation of novel metabolic pathways, as evidenced by changed proteins’ structure (at 1274 cm−1), was found only in the case of ZnO NPs. This proves that Zn2+ are not the only inducers of the response to ZnO NPs. Low bioavailable fraction of Zn2+ in the digestive glands exposed to ZnO NPs further supports the role of particles in the ZnO NP-generated effects. This study provides the evidence that ZnO NPs induce their own metabolic responses in the subtoxic range.


Journal of Hazardous Materials | 2013

Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

Agron Millaku; Damjana Drobne; Matjaz Torkar; Sara Novak; Maja Remskar; Živa Pipan-Tkalec

We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.


Environmental Science & Technology | 2013

Effect of ingested tungsten oxide (WOx) nanofibers on digestive gland tissue of Porcellio scaber (Isopoda, Crustacea): fourier transform infrared (FTIR) imaging.

Sara Novak; Damjana Drobne; Lisa Vaccari; M. Kiskinova; Paolo Ferraris; Giovanni Birarda; Maja Remskar; Matej Hočevar

Tungsten nanofibers are recognized as biologically potent. We study deviations in molecular composition between normal and digestive gland tissue of WOx nanofibers (nano-WOx) fed invertebrate Porcellio scaber (Iosopda, Crustacea) and revealed mechanisms of nano-WOx effect in vivo. Fourier Transform Infrared (FTIR) imaging performed on digestive gland epithelium was supplemented by toxicity and cytotoxicity analyses as well as scanning electron microscopy (SEM) of the surface of the epithelium. The difference in the spectra of the Nano-WOx treated and control cells showed up in the central region of the cells and were related to lipid peroxidation, and structural changes of nucleic acids. The conventional toxicity parameters failed to show toxic effects of nano-WOx, whereas the cytotoxicity biomarkers and SEM investigation of digestive gland epithelium indicated sporadic effects of nanofibers. Since toxicological and cytological measurements did not highlight severe effects, the biochemical alterations evidenced by FTIR imaging have been explained as the result of cell protection (acclimation) mechanisms to unfavorable conditions and indication of a nonhomeostatic state, which can lead to toxic effects.

Collaboration


Dive into the Sara Novak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janez Valant

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Tea Romih

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Anita Jemec

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Vaccari

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

Paolo Ferraris

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Maja Remskar

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge