Sara Vandenwijngaert
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sara Vandenwijngaert.
Circulation | 2009
Peter Pokreisz; Sara Vandenwijngaert; Virginie Bito; An Van Den Bergh; Ilse Lenaerts; Cornelius J. Busch; Glenn Marsboom; Olivier Gheysens; Pieter Vermeersch; Liesbeth Biesmans; Xiaoshun Liu; Hilde Gillijns; Marijke Pellens; Alfons Van Lommel; Emmanuel Buys; Luc Schoonjans; Johan Vanhaecke; Erik Verbeken; Karin R. Sipido; Paul Herijgers; Kenneth D. Bloch; Stefan Janssens
Background— Ventricular expression of phosphodiesterase-5 (PDE5), an enzyme responsible for cGMP catabolism, is increased in human right ventricular hypertrophy, but its role in left ventricular (LV) failure remains incompletely understood. We therefore measured LV PDE5 expression in patients with advanced systolic heart failure and characterized LV remodeling after myocardial infarction in transgenic mice with cardiomyocyte-specific overexpression of PDE5 (PDE5-TG). Methods and Results— Immunoblot and immunohistochemistry techniques revealed that PDE5 expression was greater in explanted LVs from patients with dilated and ischemic cardiomyopathy than in control hearts. To evaluate the impact of increased ventricular PDE5 levels on cardiac function, PDE5-TG mice were generated. Confocal and immunoelectron microscopy revealed increased PDE5 expression in cardiomyocytes, predominantly localized to Z-bands. At baseline, myocardial cGMP levels, cell shortening, and calcium handling in isolated cardiomyocytes and LV hemodynamic measurements were similar in PDE5-TG and wild-type littermates. Ten days after myocardial infarction, LV cGMP levels had increased to a greater extent in wild-type mice than in PDE5-TG mice (P<0.05). Ten weeks after myocardial infarction, LV end-systolic and end-diastolic volumes were larger in PDE5-TG than in wild-type mice (57±5 versus 39±4 and 65±6 versus 48±4 &mgr;L, respectively; P<0.01 for both). LV systolic dysfunction and diastolic dysfunction were more marked in PDE5-TG than in wild-type mice, associated with enhanced hypertrophy and reduced contractile function in isolated cardiomyocytes from remote myocardium. Conclusions— Increased PDE5 expression predisposes mice to adverse LV remodeling after myocardial infarction. Increased myocardial PDE5 expression in patients with advanced cardiomyopathy may contribute to the development of heart failure and represents an important therapeutic target.
Circulation | 2015
Giulia Coppiello; María Collantes; María Salomé Sirerol-Piquer; Sara Vandenwijngaert; Sandra Schoors; Melissa Swinnen; Ine Vandersmissen; Paul Herijgers; Baki Topal; Johannes van Loon; Jan Goffin; Felipe Prosper; Peter Carmeliet; Jose Manuel Garcia-Verdugo; Stefan Janssens; Iván Peñuelas; Xabier L. Aranguren; Aernout Luttun
Background— Microvascular endothelium in different organs is specialized to fulfill the particular needs of parenchymal cells. However, specific information about heart capillary endothelial cells (ECs) is lacking. Methods and Results— Using microarray profiling on freshly isolated ECs from heart, brain, and liver, we revealed a genetic signature for microvascular heart ECs and identified Meox2/Tcf15 heterodimers as novel transcriptional determinants. This signature was largely shared with skeletal muscle and adipose tissue endothelium and was enriched in genes encoding fatty acid (FA) transport–related proteins. Using gain- and loss-of-function approaches, we showed that Meox2/Tcf15 mediate FA uptake in heart ECs, in part, by driving endothelial CD36 and lipoprotein lipase expression and facilitate FA transport across heart ECs. Combined Meox2 and Tcf15 haplodeficiency impaired FA uptake in heart ECs and reduced FA transfer to cardiomyocytes. In the long term, this combined haplodeficiency resulted in impaired cardiac contractility. Conclusions— Our findings highlight a regulatory role for ECs in FA transfer to the heart parenchyma and unveil 2 of its intrinsic regulators. Our insights could be used to develop new strategies based on endothelial Meox2/Tcf15 targeting to modulate FA transfer to the heart and remedy cardiac dysfunction resulting from altered energy substrate usage.
PLOS ONE | 2013
Sara Vandenwijngaert; Peter Pokreisz; Hadewich Hermans; Hilde Gillijns; Marijke Pellens; Noortje A. M. Bax; Giulia Coppiello; Wouter Oosterlinck; Ágnes Balogh; Zoltán Papp; Carlijn Carlijn Bouten; Jozef Bartunek; Jan D'hooge; Aernout Luttun; Erik Verbeken; Marie Christine Herregods; Paul Herijgers; Kenneth D. Bloch; Stefan Janssens
Background The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC). Methodology/Principal Findings In patients with severe aortic stenosis (AS) undergoing valve replacement, we detected greater myocardial PDE5 expression than in control hearts. We observed robust expression in scattered cardiac myocytes of those AS patients with higher LV filling pressures and BNP serum levels. Following TAC, we detected similar, focal PDE5 expression in cardiac myocytes of C57BL/6NTac mice exhibiting the most pronounced LV remodeling. To examine the effect of cell-specific PDE5 expression, we subjected transgenic mice with cardiac myocyte-specific PDE5 overexpression (PDE5-TG) to TAC. LV hypertrophy and fibrosis were similar as in WT, but PDE5-TG had increased cardiac dimensions, and decreased dP/dtmax and dP/dtmin with prolonged tau (P<0.05 for all). Greater cardiac dysfunction in PDE5-TG was associated with reduced myocardial cGMP and SERCA2 levels, and higher passive force in cardiac myocytes in vitro. Conclusions/Significance Myocardial PDE5 expression is increased in the hearts of humans and mice with chronic pressure overload. Increased cardiac myocyte-specific PDE5 expression is a molecular hallmark in hypertrophic hearts with contractile failure, and represents an important therapeutic target.
American Journal of Physiology-heart and Circulatory Physiology | 2013
Xiaoshun Liu; Piet Claus; Ming Wu; Geert Reyns; Peter Verhamme; Peter Pokreisz; Sara Vandenwijngaert; Christophe Dubois; Johan Vanhaecke; Erik Verbeken; Jan Bogaert; Stefan Janssens
Placental growth factor (PlGF) has a distinct biological phenotype with a predominant proangiogenic role in disease without affecting quiescent vessels in healthy organs. We tested whether systemic administration of recombinant human (rh)PlGF improves regional myocardial blood flow (MBF) and systolic function recovery in a porcine chronic myocardial ischemia model. We implanted a flow-limiting stent in the proximal left anterior descending coronary artery and measured systemic hemodynamics, regional myocardial function using MRI, and blood flow using colored microspheres 4 wk later. Animals were then randomized in a blinded way to receive an infusion of rhPlGF (15 μg·kg(-1)·day(-1), n = 9) or PBS (control; n = 10) for 2 wk. At 8 wk, myocardial perfusion and function were reassessed. Infusion of rhPlGF transiently increased PlGF serum levels >30-fold (1,153 ± 180 vs. 33 ± 18 pg/ml at baseline, P < 0.001) without affecting systemic hemodynamics. From 4 to 8 wk, rhPlGF increased regional MBF from 0.46 ± 0.11 to 0.85 ± 0.16 ml·min(-1)·g(-1), with a concomitant increase in systolic wall thickening from 11 ± 3% to 26 ± 5% in the ischemic area. In control animals, no significant changes from 4 to 8 wk were observed (MBF: 0.45 ± 0.07 to 0.49 ± 0.08 ml·min(-1)·g(-1) and systolic wall thickening: 14 ± 4% to 18 ± 1%). rhPlGF-induced functional improvement was accompanied by increased myocardial neovascularization, enhanced glycogen utilization, and reduced oxidative stress and cardiomyocyte apoptosis in the ischemic zone. In conclusion, systemic rhPlGF infusion significantly enhances regional blood flow and contractile function of the chronic ischemic myocardium without adverse effects. PlGF protein infusion may represent an attractive therapeutic strategy to increase myocardial perfusion and energetics in chronic ischemic cardiomyopathy.
American Journal of Physiology-heart and Circulatory Physiology | 2016
Ana Dordea; Sara Vandenwijngaert; Victor Garcia; Robert Tainsh; Daniel I. Nathan; Kaitlin Allen; Michael J. Raher; Laurel T. Tainsh; Frank Fan Zhang; Wolfgang S. Lieb; Sarah Mikelman; Andrew Kirby; Christine Stevens; Robrecht Thoonen; Allyson G. Hindle; Patrick Sips; John R. Falck; Mark J. Daly; Peter Brouckaert; Kenneth D. Bloch; Donald B. Bloch; Rajeev Malhotra; Michal Laniado Schwartzman; Emmanuel Buys
Dysregulated nitric oxide (NO) signaling contributes to the pathogenesis of hypertension, a prevalent and often sex-specific risk factor for cardiovascular disease. We previously reported that mice deficient in the α1-subunit of the NO receptor soluble guanylate cyclase (sGCα1 (-/-) mice) display sex- and strain-specific hypertension: male but not female sGCα1 (-/-) mice are hypertensive on an 129S6 (S6) but not a C57BL6/J (B6) background. We aimed to uncover the genetic and molecular basis of the observed sex- and strain-specific blood pressure phenotype. Via linkage analysis, we identified a suggestive quantitative trait locus associated with elevated blood pressure in male sGCα1 (-/-)S6 mice. This locus encompasses Cyp4a12a, encoding the predominant murine synthase of the vasoconstrictor 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE). Renal expression of Cyp4a12a in mice was associated with genetic background, sex, and testosterone levels. In addition, 20-HETE levels were higher in renal preglomerular microvessels of male sGCα1 (-/-)S6 than of male sGCα1 (-/-)B6 mice. Furthermore, treating male sGCα1 (-/-)S6 mice with the 20-HETE antagonist 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE) lowered blood pressure. Finally, 20-HEDE rescued the genetic background- and testosterone-dependent impairment of acetylcholine-induced relaxation in renal interlobar arteries associated with sGCα1 deficiency. Elevated Cyp4a12a expression and 20-HETE levels render mice susceptible to hypertension and vascular dysfunction in a setting of sGCα1 deficiency. Our data identify Cyp4a12a as a candidate sex-specific blood pressure-modifying gene in the context of deficient NO-sGC signaling.
Antioxidants & Redox Signaling | 2017
Sara Vandenwijngaert; Melissa Swinnen; Ann-Sophie Walravens; Manu Beerens; Hilde Gillijns; Ellen Caluwé; Robert Tainsh; Daniel I. Nathan; Kaitlin Allen; Peter Brouckaert; Jozef Bartunek; Marielle Scherrer-Crosbie; Kenneth D. Bloch; Donald B. Bloch; Stefan Janssens; Emmanuel Buys
AIMS The use of doxorubicin, a potent chemotherapeutic agent, is limited by cardiotoxicity. We tested the hypothesis that decreased soluble guanylate cyclase (sGC) enzyme activity contributes to the development of doxorubicin-induced cardiotoxicity. RESULTS Doxorubicin administration (20 mg/kg, intraperitoneally [IP]) reduced cardiac sGC activity in wild-type (WT) mice. To investigate whether decreased sGC activity contributes to doxorubicin-induced cardiotoxicity, we studied mice with cardiomyocyte-specific deficiency of the sGC α1-subunit (mice with cardiomyocyte-specific deletion of exon 6 of the sGCα1 allele [sGCα1-/-CM]). After 12 weeks of doxorubicin administration (2 mg/kg/week IP), left ventricular (LV) systolic dysfunction was greater in sGCα1-/-CM than WT mice. To further assess whether reduced sGC activity plays a pathogenic role in doxorubicin-induced cardiotoxicity, we studied a mouse model in which decreased cardiac sGC activity was induced by cardiomyocyte-specific expression of a dominant negative sGCα1 mutant (DNsGCα1) upon doxycycline removal (Tet-off). After 8 weeks of doxorubicin administration, DNsGCα1tg/+, but not WT, mice displayed LV systolic dysfunction and dilatation. The difference in cardiac function and remodeling between DNsGCα1tg/+ and WT mice was even more pronounced after 12 weeks of treatment. Further impairment of cardiac function was attenuated when DNsGCα1 gene expression was inhibited (beginning at 8 weeks of doxorubicin treatment) by administering doxycycline. Furthermore, doxorubicin-associated reactive oxygen species generation was higher in sGCα1-deficient than WT hearts. Innovation and Conclusion: These data demonstrate that a reduction in cardiac sGC activity worsens doxorubicin-induced cardiotoxicity in mice and identify sGC as a potential therapeutic target. Various pharmacological sGC agonists are in clinical development or use and may represent a promising approach to limit doxorubicin-associated cardiotoxicity. Antioxid. Redox Signal. 26, 153-164.
PLOS ONE | 2018
Sara Vandenwijngaert; Clara D. Ledsky; Obiajulu Agha; Connie Wu; Dongjian Hu; Aranya Bagchi; Ibrahim J. Domian; Emmanuel Buys; Christopher Newton-Cheh; Donald B. Bloch
Aims Atrial natriuretic peptide (ANP), secreted primarily by atrial cardiomyocytes, decreases blood pressure by raising cyclic 3’,5’-guanosine monophosphate (cGMP) levels and inducing vasorelaxation, natriuresis, and diuresis. Raising the level of ANP has been shown to be an effective treatment for hypertension. To advance the future development of an anti-microRNA (miR) approach to increasing expression of ANP, we investigated the regulation of NPPA expression by two miRs: miR-425 and miR-155. We examined whether miR-425 and miR-155 have an additive effect on the expression and function of ANP. Methods and results Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were transfected with miR-425, miR-155, or a combination of the two miRs. Two days later, NPPA expression was measured using real time qPCR. Each of the miRs decreased NPPA expression over a wide range of concentrations, with a significant reduction at concentrations as low as 1 nM. The combination of miR-425 and miR-155 reduced NPPA expression to a greater extent than either miR-425 or miR-155 alone. An in vitro assay was developed to study the potential biological significance of the miR-induced decrease in NPPA expression. The cooperative effect of miR-425 and miR-155 on NPPA expression was associated with a significant decrease in cGMP levels. Conclusions These data demonstrate that miR-425 and miR-155 regulate NPPA expression in a cooperative manner. Targeting both miRNAs with anti-miRs (possibly at submaximal concentrations) might prove to be a more effective strategy to modulate ANP levels, and thus blood pressure, than targeting either miRNA alone.
Inflammation in Heart Failure | 2015
Robrecht Thoonen; Sara Vandenwijngaert; Jonathan Beaudoin; Emmanuel Buys; Marielle Scherrer-Crosbie
Animal models are widely used to gain insights into the pathophysiology and molecular mechanisms of heart failure. The advantages and disadvantages of small animal and large-animal models of heart failure are discussed. Several models are described, including acquired cardiomyopathies (myocardial infarction, ischemia-reperfusion, pressure and volume overload, toxic cardiomyopathies, sepsis-associated heart failure) and genetic cardiomyopathies. Possible improvements of animal models are discussed.Abstract Animal models are widely used to gain insights into the pathophysiology and molecular mechanisms of heart failure. The advantages and disadvantages of small animal and large-animal models of heart failure are discussed. Several models are described, including acquired cardiomyopathies (myocardial infarction, ischemia-reperfusion, pressure and volume overload, toxic cardiomyopathies, sepsis-associated heart failure) and genetic cardiomyopathies. Possible improvements of animal models are discussed.
BMC Clinical Pharmacology | 2015
Sara Vandenwijngaert; Melissa Swinnen; Hilde Gillijns; Ellen Caluwé; Robert Tainsh; Daniel I. Nathan; Kaitlin Allen; Jozef Bartunek; Peter Brouckaert; Marielle Scherrer-Crosbie; Kenneth D. Bloch; Stefan Janssens; Emmanuel Buys
Background The use of doxorubicin (DOX), a potent chemotherapeutic agent, is limited by cardiotoxicity, leading to congestive heart failure in up to 5% of DOX-treated patients. Dysfunctional cyclic guanosine 3’, 5’-monophosphate (cGMP) signaling has been implicated in various cardiovascular diseases, including cardiotoxicity associated with DOX administration. We tested the hypothesis that cGMP generated by soluble guanylate cyclase (sGC), the target for clinically available pharmacological agents that enhance cGMP levels (e.g. riociguat), protects against DOX-induced cardiomyopathy.
BMC Clinical Pharmacology | 2015
Wolfgang S. Lieb; Stefan Münster; Ana Dordea; Sara Vandenwijngaert; Robert Tainsh; Peter Brouckaert; Warren M. Zapol; Emmanuel Buys
Background The nitric oxide (NO)-soluble guanylate cyclase (sGC)cyclic guanosine 3’5’-monophosphate (cGMP) pathway regulates intraocular pressure (IOP). Preclinical and clincial studies have demonstrated the ability of NO-donor compounds to lower IOP (e.g. VESNEO). The use of inhaled NO gas (iNO), a specific pulmonary but not systemic vasodilator, is an approved therapy for pulmonary hypertension and is under development as a treatment for other cardiovascular diseases (e.g. for myocardial ischemia, the NOMI trial). We hypothesized that breathing NO lowers IOP in an sGC-dependent manner.