Sarah A. Connolly
DePaul University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah A. Connolly.
Nature Reviews Microbiology | 2011
Sarah A. Connolly; Julia O. Jackson; Theodore S. Jardetzky; Richard Longnecker
Herpesviruses are double-stranded DNA, enveloped viruses that infect host cells through fusion with either the host cell plasma membrane or endocytic vesicle membranes. Efficient infection of host cells by herpesviruses is remarkably more complex than infection by other viruses, as it requires the concerted effort of multiple glycoproteins and involves multiple host receptors. The structures of the major viral glycoproteins and a number of host receptors involved in the entry of the prototypical herpesviruses, the herpes simplex viruses (HSVs) and Epstein–Barr virus (EBV), are now known. These structural studies have accelerated our understanding of HSV and EBV binding and fusion by revealing the conformational changes that occur on virus–receptor binding, depicting potential sites of functional protein and lipid interactions, and identifying the probable viral fusogen.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Sarah A. Connolly; George P. Leser; Hsien Shen Yin; Theodore S. Jardetzky; Robert A. Lamb
For paramyxoviruses, two viral glycoproteins are key to the entry process: an attachment protein (HN, H, or G) and the fusion protein (F). The F protein folds to a metastable state that can be triggered to undergo large conformational rearrangements to a fusogenic intermediate and a more stable postfusion state. The triggering mechanism that controls paramyxovirus fusion has not been elucidated. To correlate the molecular structure of a soluble form of the prefusion F (PIV5 F-GCNt) with the biological function of F, soluble F protein was triggered to refold. In the absence of HN, heat was found to function as a surrogate F trigger, and F associated with liposomes and aggregated on sucrose density gradients. Electron microscopy data showed that triggered F formed rosettes. Taken together these data suggest that release and membrane insertion of the hydrophobic fusion peptide require both cleavage of F and heat. Heating of cleaved F causes conversion to a postfusion form as judged by its “golf tee” morphology in the electron microscope. Heating of uncleaved F also causes conversion of F to a morphologically similar form. The reactivity of the F protein with conformation-specific mAbs and peptide binding suggest that soluble F-GCNt and membrane-bound F proteins refold through a comparable pathway.
Journal of Virology | 2009
Sarah A. Connolly; George P. Leser; Theodore S. Jardetzky; Robert A. Lamb
ABSTRACT For paramyxoviruses, entry requires a receptor-binding protein (hemagglutinin-neuraminidase [HN], H, or G) and a fusion protein (F). Like other class I viral fusion proteins, F is expressed as a prefusion metastable protein that undergoes a refolding event to induce fusion. HN binding to its receptor triggers F refolding by an unknown mechanism. HN may serve as a clamp that stabilizes F in its prefusion state until HN binds the target cell (the “clamp model”). Alternatively, HN itself may undergo a conformational change after receptor binding that destabilizes F and causes F to trigger (the “provocateur model”). To examine F-HN interactions by bimolecular fluorescence complementation (BiFC), the cytoplasmic tails of parainfluenza virus 5 (PIV5) F and HN were fused to complementary fragments of yellow fluorescent protein (YFP). Coexpression of the BiFC constructs resulted in fluorescence; however, coexpression with unrelated BiFC constructs also produced fluorescence. The affinity of the two halves of YFP presumably superseded the F-HN interaction. Unexpectedly, coexpression of the BiFC F and HN constructs greatly enhanced fusion in multiple cell types. We hypothesize that the increase in fusion occurs because the BiFC tags bring F and HN together more frequently than occurs in a wild-type (wt) scenario. This implies that normally much of wt F is not associated with wt HN, in conflict with the clamp model for activation. Correspondingly, we show that wt PIV5 fusion occurs in an HN concentration-dependent manner. Also inconsistent with the clamp model are the findings that BiFC F does not adopt a postfusion conformation when expressed in the absence of HN and that HN coexpression does not provide resistance to the heat-induced triggering of F. In support of a provocateur model of F activation, we demonstrate by analysis of the morphology of soluble F trimers that the hyperfusogenic mutation S443P has a destabilizing effect on F.
Journal of Virology | 2014
Qing Fan; Richard Longnecker; Sarah A. Connolly
ABSTRACT To gain insight into the mechanism of herpesvirus entry into cells, the four glycoproteins that are necessary for herpes simplex virus (HSV) fusion were cloned from the saimiriine herpesvirus 1 (SaHV-1) genome, a primate member of the alphaherpesvirus family. Cell-cell fusion assays indicate that SaHV-1 entry glycoproteins function with the previously identified alphaherpesvirus entry receptors nectin-1 and CD155 but not with herpesvirus entry mediator (HVEM) or paired immunoglobulin-like type 2 receptor alpha (PILRα). Replacement of HSV-1 gD with the SaHV-1 gD homolog resulted in a complete loss of fusion function when coexpressed with HSV-1 gB and gH/gL. HSV-1 gD was also unable to substitute for SaHV-1 gD when coexpressed with SaHV-1 gB and gH/gL. Similarly, the gH/gL heterodimers from HSV-1 and SaHV-1 were not interchangeable. In contrast, both the HSV-1 and SaHV-1 gB homologs retained function in a heterotypic context. These results suggest that an essential interaction between homotypic gD and gH/gL occurs during both HSV-1 and SaHV-1 entry. To map the site of this homotypic interaction, we created a series of gD chimeras, focusing on the “profusion domain” (PFD) that consists of HSV-1 gD residues 261 to 305 or SaHV-1 gD residues 264 to 307. We identified a seven-amino-acid stretch (264 RTLPPPK 270) at the N terminus of the SaHV-1 gD PFD that contributes to homotypic fusion. Finally, we found that the gD receptor-binding region and PFD cannot function independently but that both can inhibit the function of wild-type gD. IMPORTANCE The herpesvirus entry machinery requires the concerted action of at least four glycoproteins; however, details of the interactions among these glycoproteins are not well understood. Like HSV-1, SaHV-1 belongs to the alphaherpesvirus subfamily. Using cell-cell fusion experiments, we found that SaHV-1 uses the entry receptors nectin-1 and CD155 but not HVEM or PILRα. By swapping the entry glycoproteins between HSV-1 and SaHV-1, we revealed a functional interaction between gD and gH/gL. To examine the homotypic interaction site on gD, we evaluated the function of a panel of HSV-1/SaHV-1 gD chimeras and identified a small region in the SaHV-1 gD profusion domain that is critical for SaHV-1 fusion. This study contributes to our understanding of the molecular mechanisms of herpesvirus entry and membrane fusion.
Journal of Virology | 2012
Sarah A. Connolly; Richard Longnecker
ABSTRACT Herpesvirus entry into cells requires coordinated interactions among several viral glycoproteins. The final membrane fusion step of entry is executed by glycoprotein B (gB), a class III viral fusion protein that is conserved across all herpesviruses. Fusion proteins are metastable proteins that mediate fusion by inserting into a target membrane and refolding from a prefusion to postfusion conformation to bring the viral and cell membranes together. Although the structure of gB has been solved in a conformation that likely represents its postfusion form, its prefusion structure and the details of how it refolds to execute fusion are unknown. The postfusion gB structure contains a trimeric coiled-coil at its core and a long C-terminal arm within the ectodomain packs against this coil in an antiparallel manner. This coil-arm complex is reminiscent of the six-helix bundle that provides the energy for fusion in class I fusogens. To determine the role of the coil-arm complex, we individually mutated residues in the herpes simplex virus 1 gB coil-arm complex to alanine and assessed the contribution of each residue to cell-cell and virus-cell fusion. Several coil mutations resulted in a loss of cell surface expression, indicating that the coil residues are important for proper processing of gB. Three mutations in the arm region (I671A, H681A, and F683A) reduced fusion without affecting expression. Combining these three arm mutations drastically reduced the ability of gB to execute fusion; however, fusion function could be restored by adding known hyperfusogenic mutations to the arm mutant. We propose that the formation of the coil-arm complex drives the gB transition to a postfusion conformation and the coil-arm complex performs a function similar to that of the six-helix bundle in class I fusion. Furthermore, we suggest that these specific mutations in the arm may energetically favor the prefusion state of gB.
Journal of Virology | 2006
Mei Lin Z. Bissonnette; Sarah A. Connolly; D. F. Young; Richard E. Randall; Reay G. Paterson; Robert A. Lamb
ABSTRACT Paramyxoviruses enter cells by fusing their envelopes with the plasma membrane, a process that occurs at neutral pH. Recently, it has been found that there is an exception to this dogma in that a porcine isolate of the paramyxovirus parainfluenza virus 5 (PIV5), known as SER, requires a low-pH step for fusion (S. Seth, A. Vincent, and R. W. Compans, J. Virol. 77: 6520-6527, 2003). As a low-pH activation mechanism for fusion would greatly facilitate biophysical studies of paramyxovirus-mediated membrane fusion, we have reexamined the triggering of the PIV5 SER fusion protein. Using multiple assays, we could not find a requirement for low-pH triggering of PIV5 SER fusion. The challenge of discovering how the paramyxovirus receptor binding protein (HN, H, or G) activates the metastable fusion protein to cause membrane fusion at neutral pH remains.
Virology | 2013
Cynthia L. Rowe; Sarah A. Connolly; Jia Chen; Theodore S. Jardetzky; Richard Longnecker
We investigated whether soluble EBV gH/gL (sgH/gL) functions in fusion and made a series of truncations of gH/gL domains based on the gH/gL crystal structure. We found sgH/gL failed to mediate cell-cell fusion both when co-expressed with the other entry glycoproteins and when added exogenously to fusion assays. Interestingly, sgH/gL inhibited cell-cell fusion in a dose dependent manner when co-expressed. sgH/gL from HSV was unable to inhibit EBV fusion, suggesting the inhibition was specific to EBV gH/gL. sgH/gL stably binds gp42, but not gB nor gH/gL. The domain mutants, DI/gL, DI-II/gL and DI-II-III/gL were unable to bind gp42. Instead, DI-II/gL, DI-II-III/gL and sgH/gL but not DI/gL decreased the expression of gp42, resulting in decreased overall fusion. Overall, our results suggest that domain IV may be required for proper folding and the transmembrane domain and cytoplasmic tail of EBV gH/gL are required for the most efficient fusion.
Journal of Virology | 2015
Qing Fan; Richard Longnecker; Sarah A. Connolly
ABSTRACT Whereas most viruses require only a single protein to bind to and fuse with cells, herpesviruses use multiple glycoproteins to mediate virus entry, and thus communication among these proteins is required. For most alphaherpesviruses, the minimal set of viral proteins required for fusion with the host cell includes glycoproteins gD, gB, and a gH/gL heterodimer. In the current model of entry, gD binds to a cellular receptor and transmits a signal to gH/gL. This signal then triggers gB, the conserved fusion protein, to insert into the target membrane and refold to merge the viral and cellular membranes. We previously demonstrated that gB homologs from two alphaherpesviruses, herpes simplex virus 1 (HSV-1) and saimiriine herpesvirus 1 (SaHV-1), were interchangeable. In contrast, neither gD nor gH/gL functioned with heterotypic entry glycoproteins, indicating that gD and gH/gL exhibit an essential type-specific functional interaction. To map this homotypic interaction site on gH/gL, we generated HSV-1/SaHV-1 gH and gL chimeras. The functional interaction with HSV-1 gD mapped to the N-terminal domains I and II of the HSV-1 gH ectodomain. The core of HSV-1 gL that interacts with gH also was required for functional homotypic interaction. The N-terminal gH/gL domains I and II are the least conserved and may have evolved to support species-specific glycoprotein interactions. IMPORTANCE The first step of the herpesvirus life cycle is entry into a host cell. A coordinated interaction among multiple viral glycoproteins is required to mediate fusion of the viral envelope with the cell membrane. The details of how these glycoproteins interact to trigger fusion are unclear. By swapping the entry glycoproteins of two alphaherpesviruses (HSV-1 and SaHV-1), we previously demonstrated a functional homotypic interaction between gD and gH/gL. To define the gH and gL requirements for homotypic interaction, we evaluated the function of a panel of HSV-1/SaHV-1 gH and gL chimeras. We demonstrate that domains I and II of HSV-1 gH are sufficient to promote a functional, albeit reduced, interaction with HSV-1 gD. These findings contribute to our model of how the entry glycoproteins cooperate to mediate herpesvirus entry into the cell.
Journal of Virology | 2012
Aarohi Zokarkar; Sarah A. Connolly; Theodore S. Jardetzky; Robert A. Lamb
ABSTRACT Cysteines were introduced into the membrane-proximal external region (MPER) of the paramyxovirus F protein. A disulfide bond formed, and the mutant protein was expressed at the cell surface but was fusion inactive. Reduction of the disulfide bond restored fusion activity. The data indicate that in addition to dissociation of the three-helix bundle stalk domain of prefusion F, the MPER region also needs to separate for F to be able to refold and cause fusion.
Journal of Virological Methods | 2015
Michelle Lajko; Alexander Haddad; Carolyn Robinson; Sarah A. Connolly
Herpesvirus entry into cells requires coordinated interactions among several viral transmembrane glycoproteins. Viral glycoproteins bind to receptors and interact with other glycoproteins to trigger virus-cell membrane fusion. Details of these glycoprotein interactions are not well understood because they are likely transient and/or low affinity. Proximity biotinylation is a promising protein-protein interaction assay that can capture transient interactions in live cells. One protein is linked to a biotin ligase and a second protein is linked to a short specific acceptor peptide (AP). If the two proteins interact, the ligase will biotinylate the AP, without requiring a sustained interaction. To examine herpesvirus glycoprotein interactions, the ligase and AP were linked to herpes simplex virus 1 (HSV1) gD and Epstein Barr virus (EBV) gB. Interactions between monomers of these oligomeric proteins (homotypic interactions) served as positive controls to demonstrate assay sensitivity. Heterotypic combinations served as negative controls to determine assay specificity, since HSV1 gD and EBV gB do not interact functionally. Positive controls showed strong biotinylation, indicating that viral glycoprotein proximity can be detected. Unexpectedly, the negative controls also showed biotinylation. These results demonstrate the special circumstances that must be considered when examining interactions among glycosylated proteins that are constrained within a membrane.