Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah C. Charnaud is active.

Publication


Featured researches published by Sarah C. Charnaud.


Nature | 2014

PTEX is an essential nexus for protein export in malaria parasites

Brendan Elsworth; Kathryn Matthews; Catherine Q. Nie; Ming Kalanon; Sarah C. Charnaud; Paul R. Sanders; Scott A. Chisholm; Natalie A. Counihan; Philip J. Shaw; Paco Pino; Jo-Anne Chan; Mauro Ferreira de Azevedo; Stephen J. Rogerson; James G. Beeson; Brendan S. Crabb; Paul R. Gilson; Tania F. de Koning-Ward

During the blood stages of malaria, several hundred parasite-encoded proteins are exported beyond the double-membrane barrier that separates the parasite from the host cell cytosol. These proteins have a variety of roles that are essential to virulence or parasite growth. There is keen interest in understanding how proteins are exported and whether common machineries are involved in trafficking the different classes of exported proteins. One potential trafficking machine is a protein complex known as the Plasmodium translocon of exported proteins (PTEX). Although PTEX has been linked to the export of one class of exported proteins, there has been no direct evidence for its role and scope in protein translocation. Here we show, through the generation of two parasite lines defective for essential PTEX components (HSP101 or PTEX150), and analysis of a line lacking the non-essential component TRX2 (ref. 12), greatly reduced trafficking of all classes of exported proteins beyond the double membrane barrier enveloping the parasite. This includes proteins containing the PEXEL motif (RxLxE/Q/D) and PEXEL-negative exported proteins (PNEPs). Moreover, the export of proteins destined for expression on the infected erythrocyte surface, including the major virulence factor PfEMP1 in Plasmodium falciparum, was significantly reduced in PTEX knockdown parasites. PTEX function was also essential for blood-stage growth, because even a modest knockdown of PTEX components had a strong effect on the parasite’s capacity to complete the erythrocytic cycle both in vitro and in vivo. Hence, as the only known nexus for protein export in Plasmodium parasites, and an essential enzymic machine, PTEX is a prime drug target.


Journal of Biological Chemistry | 2012

Biosynthesis, Localization, and Macromolecular Arrangement of the Plasmodium falciparum Translocon of Exported Proteins (PTEX)

Hayley E. Bullen; Sarah C. Charnaud; Ming Kalanon; David T. Riglar; Chaitali Dekiwadia; Niwat Kangwanrangsan; Motomi Torii; Takafumi Tsuboi; Jacob Baum; Stuart A. Ralph; Alan F. Cowman; Tania F. de Koning-Ward; Brendan S. Crabb; Paul R. Gilson

Background: To survive, Plasmodium falciparum parasites export proteins into their host cell. Results: We have characterized the localization, synthesis, and macromolecular-arrangement of the protein export machinery in Plasmodium falciparum. Conclusion: This machinery is carried into the host-cell and is present as a large macromolecular complex. Significance: These data fill current gaps in the field relating to the biochemical nature of Plasmodium falciparum protein export. To survive within its host erythrocyte, Plasmodium falciparum must export hundreds of proteins across both its parasite plasma membrane and surrounding parasitophorous vacuole membrane, most of which are likely to use a protein complex known as PTEX (Plasmodium translocon of exported proteins). PTEX is a putative protein trafficking machinery responsible for the export of hundreds of proteins across the parasitophorous vacuole membrane and into the human host cell. Five proteins are known to comprise the PTEX complex, and in this study, three of the major stoichiometric components are investigated including HSP101 (a AAA+ ATPase), a protein of no known function termed PTEX150, and the apparent membrane component EXP2. We show that these proteins are synthesized in the preceding schizont stage (PTEX150 and HSP101) or even earlier in the life cycle (EXP2), and before invasion these components reside within the dense granules of invasive merozoites. From these apical organelles, the protein complex is released into the host cell where it resides with little turnover in the parasitophorous vacuole membrane for most of the remainder of the following cell cycle. At this membrane, PTEX is arranged in a stable macromolecular complex of >1230 kDa that includes an ∼600-kDa apparently homo-oligomeric complex of EXP2 that can be separated from the remainder of the PTEX complex using non-ionic detergents. Two different biochemical methods undertaken here suggest that PTEX components associate as EXP2-PTEX150-HSP101, with EXP2 associating with the vacuolar membrane. Collectively, these data support the hypothesis that EXP2 oligomerizes and potentially forms the putative membrane-spanning pore to which the remainder of the PTEX complex is attached.


Cellular Microbiology | 2012

Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte

Simone Külzer; Sarah C. Charnaud; Tal Dagan; Jan Riedel; Pradipta Mandal; Eve-Rachele Pesce; Blatch Crabb; Paul R. Gilson; Jude M. Przyborski

Malaria parasites modify their host cell, the mature human erythrocyte. We are interested in the molecules mediating these processes, and have recently described a family of parasite‐encoded heat shock proteins (PfHsp40s) that are targeted to the host cell, and implicated in host cell modification. Hsp40s generally function as co‐chaperones of members of the Hsp70 family, and until now it was thought that human Hsp70 acts as the PfHsp40 interaction partner within the host cell. Here we revise this hypothesis, and identify and characterize an exported parasite‐encoded Hsp70, referred to as PfHsp70‐x. PfHsp70‐x is exported to the host erythrocyte where it forms a complex with PfHsp40s in structures known as J‐dots, and is closely associated with PfEMP1. Interestingly, Hsp70‐x is encoded only by parasite species that export the major virulence factor EMP1, implying a possible role for Hsp70‐x in EMP1 presentation at the surface of the infected erythrocyte. Our data strongly support the presence of parasite‐encoded chaperone/co‐chaperone complexes within the host erythrocyte, which are involved in protein traffic through the host cell. The host–pathogen interaction within the infected erythrocyte is more complex than previously thought, and is driven notonly by parasite co‐chaperones, but also by the parasite‐encoded chaperone Hsp70‐x itself.


Nature Communications | 2013

Spatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum-infected erythrocytes.

David T. Riglar; Kelly L. Rogers; Eric Hanssen; Lynne Turnbull; Hayley E. Bullen; Sarah C. Charnaud; Jude M. Przyborski; Paul R. Gilson; Cynthia B. Whitchurch; Brendan S. Crabb; Jake Baum; Alan F. Cowman

Export of proteins into the infected erythrocyte is critical for malaria parasite survival. The majority of effector proteins are thought to export via a proteinaceous translocon, resident in the parasitophorous vacuole membrane surrounding the parasite. Identification of the Plasmodium translocon of exported proteins and its biochemical association with exported proteins suggests it performs this role. Direct evidence for this, however, is lacking. Here using viable purified Plasmodium falciparum merozoites and three-dimensional structured illumination microscopy, we investigate remodelling events immediately following parasite invasion. We show that multiple complexes of the Plasmodium translocon of exported proteins localize together in foci that dynamically change in clustering behaviour. Furthermore, we provide conclusive evidence of spatial association between exported proteins and exported protein 2, a core component of the Plasmodium translocon of exported proteins, during native conditions and upon generation of translocation intermediates. These data provide the most direct cellular evidence to date that protein export occurs at regions of the parasitophorous vacuole membrane housing the Plasmodium translocon of exported proteins complex.


PLOS ONE | 2014

Plasmodium falciparum transfected with ultra bright NanoLuc luciferase offers high sensitivity detection for the screening of growth and cellular trafficking inhibitors.

Mauro Ferreira de Azevedo; Catherine Q. Nie; Brendan Elsworth; Sarah C. Charnaud; Paul R. Sanders; Brendan S. Crabb; Paul R. Gilson

Drug discovery is a key part of malaria control and eradication strategies, and could benefit from sensitive and affordable assays to quantify parasite growth and to help identify the targets of potential anti-malarial compounds. Bioluminescence, achieved through expression of exogenous luciferases, is a powerful tool that has been applied in studies of several aspects of parasite biology and high throughput growth assays. We have expressed the new reporter NanoLuc (Nluc) luciferase in Plasmodium falciparum and showed it is at least 100 times brighter than the commonly used firefly luciferase. Nluc brightness was explored as a means to achieve a growth assay with higher sensitivity and lower cost. In addition we attempted to develop other screening assays that may help interrogate libraries of inhibitory compounds for their mechanism of action. To this end parasites were engineered to express Nluc in the cytoplasm, the parasitophorous vacuole that surrounds the intraerythrocytic parasite or exported to the red blood cell cytosol. As proof-of-concept, these parasites were used to develop functional screening assays for quantifying the effects of Brefeldin A, an inhibitor of protein secretion, and Furosemide, an inhibitor of new permeation pathways used by parasites to acquire plasma nutrients.


Cellular Microbiology | 2016

Proteomic analysis reveals novel proteins associated with the Plasmodium protein exporter PTEX and a loss of complex stability upon truncation of the core PTEX component, PTEX150

Brendan Elsworth; Paul R. Sanders; Thomas Nebl; Steven Batinovic; Ming Kalanon; Catherine Q. Nie; Sarah C. Charnaud; Hayley E. Bullen; Tania F. de Koning Ward; Leann Tilley; Brendan S. Crabb; Paul R. Gilson

The Plasmodium translocon for exported proteins (PTEX) has been established as the machinery responsible for the translocation of all classes of exported proteins beyond the parasitophorous vacuolar membrane of the intraerythrocytic malaria parasite. Protein export, particularly in the asexual blood stage, is crucial for parasite survival as exported proteins are involved in remodelling the host cell, an essential process for nutrient uptake, waste removal and immune evasion. Here, we have truncated the conserved C‐terminus of one of the essential PTEX components, PTEX150, in Plasmodium falciparum in an attempt to create mutants of reduced functionality. Parasites tolerated C‐terminal truncations of up to 125 amino acids with no reduction in growth, protein export or the establishment of new permeability pathways. Quantitative proteomic approaches however revealed a decrease in other PTEX subunits associating with PTEX150 in truncation mutants, suggesting a role for the C‐terminus of PTEX150 in regulating PTEX stability. Our analyses also reveal three previously unreported PTEX‐associated proteins, namely PV1, Pf113 and Hsp70‐x (respective PlasmoDB numbers; PF3D7_1129100, PF3D7_1420700 and PF3D7_0831700) and demonstrate that core PTEX proteins exist in various distinct multimeric forms outside the major complex.


Malaria Journal | 2010

A common protein export pathway in malaria parasites

Brendan S. Crabb; Hayley E. Bullen; Sarah C. Charnaud; Silvia Haase; Justin A. Boddey; Alan F. Cowman; Tania F. de Koning-Ward; Paul R. Gilson

Protozoan parasites that cause malaria export hundreds of proteins into their host red blood cell cytosol, and some even beyond that to the extracellular environment. These proteins have a wide range of functions that are crucial to parasite virulence and/or parasite survival in the human host. It has been thought for some time that a common link to all these proteins is the mechanism by which they are exported. Recently, we have revealed much of how this export occurs, including the discovery of a novel translocon through which exported proteins must pass. As a common portal for many essential proteins this translocon becomes a strongly validated drug target.


Nature Communications | 2017

An exported protein-interacting complex involved in the trafficking of virulence determinants in Plasmodium-infected erythrocytes

Steven Batinovic; Emma McHugh; Scott A. Chisholm; Kathryn Matthews; Boiyin Liu; Laure Dumont; Sarah C. Charnaud; Molly Parkyn Schneider; Paul R. Gilson; Tania F. de Koning-Ward; Matthew W. A. Dixon; Leann Tilley

The malaria parasite, Plasmodium falciparum, displays the P. falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of infected red blood cells (RBCs). We here examine the physical organization of PfEMP1 trafficking intermediates in infected RBCs and determine interacting partners using an epitope-tagged minimal construct (PfEMP1B). We show that parasitophorous vacuole (PV)-located PfEMP1B interacts with components of the PTEX (Plasmodium Translocon of EXported proteins) as well as a novel protein complex, EPIC (Exported Protein-Interacting Complex). Within the RBC cytoplasm PfEMP1B interacts with components of the Maurer’s clefts and the RBC chaperonin complex. We define the EPIC interactome and, using an inducible knockdown approach, show that depletion of one of its components, the parasitophorous vacuolar protein-1 (PV1), results in altered knob morphology, reduced cell rigidity and decreased binding to CD36. Accordingly, we show that deletion of the Plasmodium berghei homologue of PV1 is associated with attenuation of parasite virulence in vivo.


Scientific Reports | 2016

Trafficking of the exported P. falciparum chaperone PfHsp70x

Manuel Rhiel; Verena Bittl; Anke Tribensky; Sarah C. Charnaud; Maja Strecker; Sebastian Müller; Michael Lanzer; Cecilia P. Sanchez; Christine Schaeffer-Reiss; Benoit Westermann; Brendan S. Crabb; Paul R. Gilson; Simone Külzer; Jude M. Przyborski

Plasmodium falciparum extensively modifies its chosen host cell, the mature human erythrocyte. This remodelling is carried out by parasite-encoded proteins that are exported into the host cell. To gain access to the human red blood cell, these proteins must cross the parasitophorous vacuole, a membrane bound compartment surrounding the parasite that is generated during the invasion process. Many exported proteins carry a so-called PEXEL/HT signal that directs their transport. We recently reported the unexpected finding of a species-restricted parasite-encoded Hsp70, termed PfHsp70x, which is exported into the host erythrocyte cytosol. PfHsp70x lacks a classical PEXEL/HT motif, and its transport appears to be mediated by a 7 amino acid motif directly following the hydrophobic N-terminal secretory signal. In this report, we analyse this short targeting sequence in detail. Surprisingly, both a reversed and scrambled version of the motif retained the capacity to confer protein export. Site directed mutagenesis of glutamate residues within this region leads to a block of protein trafficking within the lumen of the PV. In contrast to PEXEL-containing proteins, the targeting signal is not cleaved, but appears to be acetylated. Furthermore we show that, like other exported proteins, trafficking of PfHsp70x requires the vacuolar translocon, PTEX.


Scientific Reports | 2016

Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting

Sarah C. Charnaud; Rose McGready; Asha Herten-Crabb; Rosanna Powell; Andrew J. Guy; Christine Langer; Jack S. Richards; Paul R. Gilson; Kesinee Chotivanich; Takafumi Tsuboi; David L. Narum; Mupawjay Pimanpanarak; Julie A. Simpson; James G. Beeson; François Nosten; Freya J. I. Fowkes

During pregnancy immunolglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57–0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33–0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09–0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women.

Collaboration


Dive into the Sarah C. Charnaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leann Tilley

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan F. Cowman

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge