Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah C. L. Knowles is active.

Publication


Featured researches published by Sarah C. L. Knowles.


Journal of Evolutionary Biology | 2010

Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population

Sarah C. L. Knowles; V. Palinauskas; Ben C. Sheldon

Avian malaria parasites (Plasmodium) occur commonly in wild birds and are an increasingly popular model system for understanding host–parasite co‐evolution. However, whether these parasites have fitness consequences for hosts in endemic areas is much debated, particularly since wild‐caught individuals almost always harbour chronic infections of very low parasite density. We used the anti‐malarial drug MalaroneTM to test experimentally for fitness effects of chronic malaria infection in a wild population of breeding blue tits (Cyanistes caeruleus). Medication caused a pronounced reduction in Plasmodium infection intensity, usually resulting in complete clearance of these parasites from the blood, as revealed by quantitative PCR. Positive effects of medication on malaria‐infected birds were found at multiple stages during breeding, with medicated females showing higher hatching success, provisioning rates and fledging success compared to controls. Most strikingly, we found that treatment of maternal malaria infections strongly altered within‐family differences, with reduced inequality in hatching probability and fledging mass within broods reared by medicated females. These within‐brood effects appear to explain higher fledging success among medicated females and are consistent with a model of parental optimism in which smaller (marginal) offspring can be successfully raised to independence if additional resources become available during the breeding attempt. Overall, these results demonstrate that chronic avian malaria infections, far from being benign, can have significant effects on host fitness and may thus constitute an important selection pressure in wild bird populations.


Molecular Ecology | 2007

Within‐population variation in prevalence and lineage distribution of avian malaria in blue tits, Cyanistes caeruleus

Matthew J.A. Wood; Catherine Cosgrove; Teddy A. Wilkin; Sarah C. L. Knowles; Karen P. Day; Ben C. Sheldon

The development of molecular genetic screening techniques for avian blood parasites has revealed many novel aspects of their ecology, including greatly elevated diversity and complex host–parasite relationships. Many previous studies of malaria in birds have treated single study populations as spatially homogeneous with respect to the likelihood of transmission of malaria to hosts, and we have very little idea whether any spatial heterogeneity influences different malaria lineages similarly. Here, we report an analysis of variation in the prevalence and cytochrome b lineage distribution of avian malaria infection with respect to environmental and host factors, and their interactions, in a single blue tit (Cyanistes caeruleus) population. Of 11 Plasmodium and Haemoproteus cytochrome b lineages found in 997 breeding individuals, the three most numerous (pSGS1, pTURDUS1 and pBT7) were considered separately, in addition to analyses of all avian malaria lineages pooled. Our analyses revealed marked spatial differences in the prevalence and distribution of these lineages, with local prevalence of malaria within the population ranging from over 60% to less than 10%. In addition, we found several more complex patterns of prevalence with respect to local landscape features, host state, parasite genotype, and their interactions. We discuss the implications of such heterogeneity in parasite infection at a local scale for the study of the ecology and evolution of infectious diseases in natural populations. The increased resolution afforded by the combination of molecular genetic and geographical information systems (GIS) tools has the potential to provide many insights into the epidemiology, evolution and ecology of these parasites in the future.


Molecular Ecology | 2011

Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird population.

Sarah C. L. Knowles; Matthew J.A. Wood; Ricardo Alves; Teddy A. Wilkin; Staffan Bensch; Ben C. Sheldon

Avian malaria (Plasmodium spp.) and other blood parasitic infections of birds constitute increasingly popular model systems in ecological and evolutionary host–parasite studies. Field studies of these parasites commonly use two traits in hypothesis testing: infection status (or prevalence at the population level) and parasitaemia, yet the causes of variation in these traits remain poorly understood. Here, we use quantitative PCR to investigate fine‐scale environmental and host predictors of malaria infection status and parasitaemia in a large 4‐year data set from a well‐characterized population of blue tits (Cyanistes caeruleus). We also examine the temporal dynamics of both traits within individuals. Both infection status and parasitaemia showed marked temporal and spatial variation within this population. However, spatiotemporal patterns of prevalence and parasitaemia were non‐parallel, suggesting that different biological processes underpin variation in these two traits at this scale. Infection probability and parasitaemia both increased with host age, and parasitaemia was higher in individuals investing more in reproduction (those with larger clutch sizes). Several local environmental characteristics predicted parasitaemia, including food availability, altitude, and distance from the woodland edge. Although infection status and parasitaemia were somewhat repeatable within individuals, infections were clearly dynamic: patent infections frequently disappeared from the bloodstream, with up to 26% being lost between years, and parasitaemia also fluctuated within individuals across years in a pattern that mirrored annual population‐level changes. Overall, these findings highlight the ecological complexity of avian malaria infections in natural populations, while providing valuable insight into the fundamental biology of this system that will increase its utility as a model host–parasite system.


Molecular Ecology | 2009

Phenotypic correlates of Clock gene variation in a wild blue tit population: evidence for a role in seasonal timing of reproduction

Miriam Liedvogel; Marta Szulkin; Sarah C. L. Knowles; Matthew J.A. Wood; Ben C. Sheldon

The timing of reproduction in birds varies considerably within populations and is often under strong natural selection. Individual timing within years is dependent on a range of environmental factors in addition to having an additive genetic basis. In vertebrates, an increasing amount is known about the molecular basis for variation in biological timing. The Clock gene includes a variable poly‐glutamine (poly‐Q) repeat influencing behaviour and physiology. Recent work in birds, fish and insects has demonstrated associations between Clock genotype and latitude across populations, which match latitudinal variation in breeding time. In this study, we investigated the phenotypic correlates of variation in Clock genotype within a single blue tit Cyanistes caeruleus population over two successive breeding seasons. In females, but not in males, we observed a general trend for birds with fewer poly‐Q repeats to breed earlier in the season. Incubation duration was shorter in both females and males with fewer repeats at the polymorphic Clock locus. Poly‐Q Clock allele‐frequency was homogenously distributed within the study population and did not exhibit any consistent environment‐related variation. We further tested for effects of Clock genotype on reproductive success and survival, and found that females with fewer poly‐Q repeats produced a higher number of fledged offspring. Our results therefore suggest that (i) selection in females, but not in males, for fewer poly‐Q repeats may be operating, (ii) the across–population associations in timing of breeding involving this locus could be linked to variation within populations, and (iii) the Clock gene might be involved in local adaptation to seasonal environments.


The ISME Journal | 2015

Marked seasonal variation in the wild mouse gut microbiota

Corinne F. Maurice; Sarah C. L. Knowles; Joshua Ladau; Katherine S. Pollard; Andy Fenton; Amy B. Pedersen; Peter J. Turnbaugh

Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.


Proceedings of the Royal Society B: Biological Sciences | 2013

Stability of within-host–parasite communities in a wild mammal system

Sarah C. L. Knowles; Andy Fenton; Owen L. Petchey; Trevor Jones; Rebecca Barber; Amy B. Pedersen

Simultaneous infection by multiple parasite species is ubiquitous in nature. Interactions among co-infecting parasites may have important consequences for disease severity, transmission and community-level responses to perturbations. However, our current view of parasite interactions in nature comes primarily from observational studies, which may be unreliable at detecting interactions. We performed a perturbation experiment in wild mice, by using an anthelminthic to suppress nematodes, and monitored the consequences for other parasite species. Overall, these parasite communities were remarkably stable to perturbation. Only one non-target parasite species responded to deworming, and this response was temporary: we found strong, but short-lived, increases in the abundance of Eimeria protozoa, which share an infection site with the dominant nematode species, suggesting local, dynamic competition. These results, providing a rare and clear experimental demonstration of interactions between helminths and co-infecting parasites in wild vertebrates, constitute an important step towards understanding the wider consequences of similar drug treatments in humans and animals.


International Journal for Parasitology | 2011

The effect of helminth co-infection on malaria in mice: a meta-analysis.

Sarah C. L. Knowles

The question of how helminths may alter the course of concurrent malaria infection has attracted much interest in recent years. In particular, it has been suggested that by creating an anti-inflammatory immune environment, helminth co-infection may dampen both protective and immunopathological responses to malaria parasites, thus altering malaria infection dynamics and disease severity. Both synergistic and antagonistic interactions are reported in the literature, and the causes of variation among studies are not well understood. Here, meta-analysis of 42 mouse co-infection experiments was used to address how helminths influence malaria parasite replication and host mortality, and explore the factors explaining variation in findings. Most notably, this analysis revealed contrasting effects of helminth co-infection in lethal and resolving malaria models. Whilst co-infection exacerbated mortality and increased peak parasitaemia in ordinarily resolving malaria infections (Plasmodium chabaudi and Plasmodium yoelii), effects among lethal malaria infections (Plasmodium berghei) tended to be in the opposite direction with no change in parasitaemia. In the subset of experiments on cerebral malaria models (P. berghei ANKA strain in a susceptible host), helminth co-infection significantly delayed death. These findings are consistent with the hypothesis that depending on the existing balance of pro- and anti-inflammatory responses mounted against malaria parasites in a given host, immune responses elicited by helminth co-infection may either promote or inhibit malarial disease. However, despite such broad patterns, a prominent feature of this dataset was great heterogeneity in effects across studies. A key future challenge therefore lies in explaining the biological causes of this variation, including a more thorough exploration of non-immunological mechanisms of helminth-malaria interaction.


Evolutionary Applications | 2016

One Health – an Ecological and Evolutionary Framework for tackling Neglected Zoonotic Diseases

Joanne P. Webster; Charlotte M. Gower; Sarah C. L. Knowles; David H. Molyneux; Andy Fenton

Understanding the complex population biology and transmission ecology of multihost parasites has been declared as one of the major challenges of biomedical sciences for the 21st century and the Neglected Zoonotic Diseases (NZDs) are perhaps the most neglected of all the Neglected Tropical Diseases (NTDs). Here we consider how multihost parasite transmission and evolutionary dynamics may affect the success of human and animal disease control programmes, particularly neglected diseases of the developing world. We review the different types of zoonotic interactions that occur, both ecological and evolutionary, their potential relevance for current human control activities, and make suggestions for the development of an empirical evidence base and theoretical framework to better understand and predict the outcome of such interactions. In particular, we consider whether preventive chemotherapy, the current mainstay of NTD control, can be successful without a One Health approach. Transmission within and between animal reservoirs and humans can have important ecological and evolutionary consequences, driving the evolution and establishment of drug resistance, as well as providing selective pressures for spill‐over, host switching, hybridizations and introgressions between animal and human parasites. Our aim here is to highlight the importance of both elucidating disease ecology, including identifying key hosts and tailoring control effort accordingly, and understanding parasite evolution, such as precisely how infectious agents may respond and adapt to anthropogenic change. Both elements are essential if we are to alleviate disease risks from NZDs in humans, domestic animals and wildlife.


International Journal for Parasitology | 2014

The reliability of observational approaches for detecting interspecific parasite interactions: comparison with experimental results

Andy Fenton; Sarah C. L. Knowles; Owen L. Petchey; Amy B. Pedersen

Interactions among coinfecting parasites have the potential to alter host susceptibility to infection, the progression of disease and the efficacy of disease control measures. It is therefore essential to be able to accurately infer the occurrence and direction of such interactions from parasitological data. Due to logistical constraints, perturbation experiments are rarely undertaken to directly detect interactions, therefore a variety of approaches are commonly used to infer them from patterns of parasite association in observational data. However, the reliability of these various approaches is not known. We assess the ability of a range of standard analytical approaches to detect known interactions between infections of nematodes and intestinal coccidia (Eimeria) in natural small-mammal populations, as revealed by experimental perturbations. We show that correlation-based approaches are highly unreliable, often predicting strong and highly significant associations between nematodes and Eimeria in the opposite direction to the underlying interaction. The most reliable methods involved longitudinal analyses, in which the nematode infection status of individuals at one month is related to the infection status by Eimeria the next month. Even then, however, we suggest these approaches are only viable for certain types of infections and datasets. Overall we suggest that, in the absence of experimental approaches, careful consideration be given to the choice of statistical approach when attempting to infer interspecific interactions from observational data.


Oecologia | 2010

Context-dependent effects of parental effort on malaria infection in a wild bird population, and their role in reproductive trade-offs

Sarah C. L. Knowles; Matthew J.A. Wood; Ben C. Sheldon

Although trade-offs between reproductive effort and other fitness components are frequently documented in wild populations, the underlying physiological mechanisms remain poorly understood. Parasitism has been suggested to mediate reproductive trade-offs, yet only a limited number of parasite taxa have been studied, and reproductive effort-induced changes in parasitism are rarely linked to trade-offs observed in the same population. We conducted a brood size manipulation experiment in blue tits (Cyanistes caeruleus) infected with malaria (Plasmodium) parasites, and used quantitative PCR to measure changes in parasitaemia. In one of two years investigated, parasitaemia increased as a result of brood enlargement, and was also positively associated with two other indicators of reproductive effort: clutch size and single parenthood. These associations between both experimental and naturally varying reproductive effort and parasitaemia suggest that immune control of chronic malaria infections can be compromised when parents are working hard. Brood size manipulation significantly affected the number of independent offspring produced, which was maximised when brood size was unchanged. Moreover, when parents were infected with one of two common Plasmodium species, the shape of this trade-off curve was more pronounced, suggesting that parasitic infection may exacerbate the trade-off between quantity and quality of offspring. Although the involvement of parasites in survival costs of reproduction has received much attention, these results suggest their role in other commonly documented reproductive trade-offs, such as that between number and quality of offspring, warrants further study.

Collaboration


Dive into the Sarah C. L. Knowles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Fenton

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

Alan Fenwick

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen P. Day

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge