Sarah Cooley
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah Cooley.
Blood | 2010
Sarah Cooley; Daniel J. Weisdorf; Lisbeth A. Guethlein; John P. Klein; Tao Wang; Chap T. Le; Steven G.E. Marsh; Daniel E. Geraghty; Stephen Spellman; Michael Haagenson; Martha Ladner; Elizabeth Trachtenberg; Peter Parham; Jeffrey S. Miller
Killer-cell immunoglobulin-like receptor (KIR) genes form a diverse, immunogenetic system. Group A and B KIR haplotypes have distinctive centromeric (Cen) and telomeric (Tel) gene-content motifs. Aiming to develop a donor selection strategy to improve transplant outcome, we compared the contribution of these motifs to the clinical benefit conferred by B haplotype donors. We KIR genotyped donors from 1409 unrelated transplants for acute myelogenous leukemia (AML; n = 1086) and acute lymphoblastic leukemia (ALL; n = 323). Donor KIR genotype influenced transplantation outcome for AML but not ALL. Compared with A haplotype motifs, centromeric and telomeric B motifs both contributed to relapse protection and improved survival, but Cen-B homozygosity had the strongest independent effect. With Cen-B/B homozygous donors the cumulative incidence of relapse was 15.4% compared with 36.5% for Cen-A/A donors (relative risk of relapse 0.34; 95% confidence interval 0.2-0.57; P < .001). Overall, significantly reduced relapse was achieved with donors having 2 or more B gene-content motifs (relative risk 0.64; 95% confidence interval 0.48-0.86; P = .003) for both HLA-matched and mismatched transplants. KIR genotyping of several best HLA-matched potential unrelated donors should substantially increase the frequency of transplants by using grafts with favorable KIR gene content. Adopting this practice could result in superior disease-free survival for patients with AML.
Blood | 2009
Sarah Cooley; Elizabeth Trachtenberg; Tracy L. Bergemann; Koy Saeteurn; John P. Klein; Chap T. Le; Steven G.E. Marsh; Lisbeth A. Guethlein; Peter Parham; Jeffrey S. Miller; Daniel J. Weisdorf
Survival for patients with acute myeloid leukemia (AML) is limited by treatment-related mortality (TRM) and relapse after unrelated donor (URD) hematopoietic cell transplantation (HCT). Natural killer (NK)-cell alloreactivity, determined by donor killer-cell immunoglobulin-like receptors (KIRs) and recipient HLA, correlates with successful HCT for AML. Hypothesizing that donor KIR genotype (A/A: 2 A KIR haplotypes; B/x: at least 1 B haplotype) would affect outcomes, we genotyped donors and recipients from 209 HLA-matched and 239 mismatched T-replete URD transplantations for AML. Three-year overall survival was significantly higher after transplantation from a KIR B/x donor (31% [95% CI: 26-36] vs 20% [95% CI: 13-27]; P = .007). Multivariate analysis demonstrated a 30% improvement in the relative risk of relapse-free survival with B/x donors compared with A/A donors (RR: 0.70 [95% CI: 0.55-0.88]; P = .002). B/x donors were associated with a higher incidence of chronic graft-versus-host disease (GVHD; RR: 1.51 [95% CI: 1.01-2.18]; P = .03), but not of acute GVHD, relapse, or TRM. This analysis demonstrates that unrelated donors with KIR B haplotypes confer significant survival benefit to patients undergoing T-replete HCT for AML. KIR genotyping of prospective donors, in addition to HLA typing, should be performed to identify HLA-matched donors with B KIR haplotypes.
Cytotherapy | 2011
Melissa A. Geller; Sarah Cooley; Patricia L. Judson; Rahel Ghebre; Linda F. Carson; Peter A. Argenta; Amy L. Jonson; Angela Panoskaltsis-Mortari; Julie Curtsinger; David H. McKenna; Kathryn E. Dusenbery; Robin L. Bliss; Levi S. Downs; Jeffrey S. Miller
BACKGROUND Natural killer (NK) cells derived from patients with cancer exhibit diminished cytotoxicity compared with NK cells from healthy individuals. We evaluated the tumor response and in vivo expansion of allogeneic NK cells in recurrent ovarian and breast cancer. METHODS Patients underwent a lymphodepleting preparative regimen: fludarabine 25 mg/m(2) × 5 doses, cyclophosphamide 60 mg/kg × 2 doses, and, in seven patients, 200 cGy total body irradiation (TBI) to increase host immune suppression. An NK cell product, from a haplo-identical related donor, was incubated overnight in 1000 U/mL interleukin (IL)-2 prior to infusion. Subcutaneous IL-2 (10 MU) was given three times/week × 6 doses after NK cell infusion to promote expansion, defined as detection of ≥100 donor-derived NK cells/μL blood 14 days after infusion, based on molecular chimerism and flow cytometry. RESULTS Twenty (14 ovarian, 6 breast) patients were enrolled. The median age was 52 (range 30-65) years. Mean NK cell dose was 2.16 × 10(7)cells/kg. Donor DNA was detected 7 days after NK cell infusion in 9/13 (69%) patients without TBI and 6/7 (85%) with TBI. T-regulatory cells (Treg) were elevated at day +14 compared with pre-chemotherapy (P = 0.03). Serum IL-15 levels increased after the preparative regimen (P = <0.001). Patients receiving TBI had delayed hematologic recovery (P = 0.014). One patient who was not evaluable had successful in vivo NK cell expansion. CONCLUSIONS Adoptive transfer of haplo-identical NK cells after lymphodepleting chemotherapy is associated with transient donor chimerism and may be limited by reconstituting recipient Treg cells. Strategies to augment in vivo NK cell persistence and expansion are needed.
Journal of Immunology | 2012
Bree Foley; Sarah Cooley; Michael R. Verneris; Julie Curtsinger; Xianghua Luo; Edmund K. Waller; Claudio Anasetti; Daniel J. Weisdorf; Jeffrey S. Miller
We have previously shown that NKG2C+ NK cells from CMV naive umbilical cord blood grafts expand preferentially in recipients after CMV reactivation, representing a primary NK cell response after hematopoietic cell transplantation. In this study, recipients of adult donor hematopoietic cell transplantation were assessed to evaluate the role of donor/recipient CMV serostatus on the expression and function of NKG2C+ NK cells to determine responses to secondary CMV events. Expansion of NKG2C+ NK cells was seen following clinical CMV reactivation. However, they also expanded in the absence of detectable CMV viremia when both the donor and recipient were CMV seropositive. Upregulation of NKG2C was observed in NK cells from CMV-positive recipients receiving grafts from CMV-seropositive or -seronegative donors. These in vivo–expanded NKG2C+ NK cells had an increased capacity for target cell–induced cytokine production, expressed an inhibitory killer Ig-like receptor for self-HLA and preferentially acquired CD57. Most importantly, NKG2C+ NK cells transplanted from seropositive donors exhibit heightened function in response to a secondary CMV event compared with NKG2C+ NK cells from seronegative donors. We conclude that NKG2C+ memory-like NK cells are transplantable and require active or latent (subclinical) expression of CMV Ag in the recipient for clonal expansion of NK cells previously exposed to CMV in the donor.
Experimental Hematology | 1999
Sarah Cooley; Linda J. Burns; Tanya Repka; Jeffrey S. Miller
Treatment of advanced breast cancer with autologous stem cell transplantation is limited by a high probability of disease relapse. In clinical trials, interleukin 2 (IL-2) alone can expand natural killer (NK) cells in vivo and increase their cytotoxic activity against breast cancer cell lines, but this increase is modest. Understanding the mechanisms that mediate NK cell lysis of breast cancer targets may lead to improvements of current immunotherapy strategies. NK cells from normal donors or patients receiving subcutaneous IL-2 were tested in cytotoxicity assays against five breast cancer cell lines. The role of adhesion molecules and antibodies that interact through Fc receptors on NK cells was explored. NK cell lysis of breast cancer targets is variable and is partially dependent on recognition through ICAM-1 and CD18. While blocking CD2 slightly decreased cytotoxicity, contrary to expectations, an antibody against CD58 (the ligand for CD2), failed to block killing and instead mediated an increased cytotoxicity that correlated with target density of CD58. The CD58 antibody-enhanced killing was dependent not only on FcRgammaIII but also on CD2 and ICAM-1/CD18. To further elucidate the mechanism of this CD58 antibody-dependent cellular cytotoxicity (ADCC), another antibody was tested. Trastuzumab (Herceptin), a humanized antibody against HER2/neu, mediated potent ADCC against all the HER2/neu positive breast cancer targets. Unlike CD58 antibody-mediated ADCC, Herceptin ADCC was minimally affected by blocking antibodies to CD2 or ICAM-1/CD18, which suggests a different mechanism of action. This study shows that multiple mechanisms are involved in NK cell lysis of breast cancer targets, that none of the targets are inherently resistant to killing, and that two distinct mechanisms of ADCC can target immunotherapy to breast cancer cells.
Blood | 2014
Veronika Bachanova; Sarah Cooley; Todd E. DeFor; Michael R. Verneris; Bin Zhang; David H. McKenna; Julie Curtsinger; Angela Panoskaltsis-Mortari; Dixie Lewis; Keli L. Hippen; Philip B. McGlave; Daniel J. Weisdorf; Bruce R. Blazar; Jeffrey S. Miller
Haploidentical natural killer (NK) cell infusions can induce remissions in some patients with acute myeloid leukemia (AML) but regulatory T-cell (Treg) suppression may reduce efficacy. We treated 57 refractory AML patients with lymphodepleting cyclophosphamide and fludarabine followed by NK cell infusion and interleukin (IL)-2 administration. In 42 patients, donor NK cell expansion was detected in 10%, whereas in 15 patients receiving host Treg depletion with the IL-2-diphtheria fusion protein (IL2DT), the rate was 27%, with a median absolute count of 1000 NK cells/μL blood. IL2DT was associated with improved complete remission rates at day 28 (53% vs 21%; P = .02) and disease-free survival at 6 months (33% vs 5%; P < .01). In the IL2DT cohort, NK cell expansion correlated with higher postchemotherapy serum IL-15 levels (P = .002), effective peripheral blood Treg depletion (<5%) at day 7 (P < .01), and decreased IL-35 levels at day 14 (P = .02). In vitro assays demonstrated that Tregs cocultured with NK cells inhibit their proliferation by competition for IL-2 but not for IL-15. Together with our clinical observations, this supports the need to optimize the in vivo cytokine milieu where adoptively transferred NK cells compete with other lymphocytes to improve clinical efficacy in patients with refractory AML. This study is registered at clinicaltrials.gov, identifiers: NCT00274846 and NCT01106950.
Blood | 2013
Rizwan Romee; Bree Foley; Todd Lenvik; Yue Wang; Bin Zhang; Dave Ankarlo; Xianghua Luo; Sarah Cooley; Michael R. Verneris; Bruce Walcheck; Jeffrey S. Miller
The Fc receptor CD16 is present on essentially all CD56(dim) peripheral blood natural killer (NK) cells. Upon recognition of antibody-coated cells it delivers a potent signal to NK cells, which eliminate targets through direct killing and cytokine production. Here we investigated the regulation of CD16 surface expression after NK cell activation. Cytokine activation and target cell stimulation led to marked decreases in CD16 expression. Activation of CD56(dim) NK cells by cross-linking CD16 with antibodies resulted in a loss of CD16 and CD62L, which correlated with increased interferon-γ production. A disintegrin and metalloprotease-17 (ADAM17) is shown to be expressed by NK cells, and its selective inhibition abrogated CD16 and CD62L shedding, and led to enhanced interferon-γ production, especially when triggering was delivered through CD16. Fc-induced production of cytokines by NK cells exposed to rituximab-coated B cell targets was also enhanced by ADAM17 inhibition. This supports an important role for targeting ADAM17 to prevent CD16 shedding and improve the efficacy of therapeutic antibodies. Our findings demonstrate that over-activation of ADAM17 in NK cells may be detrimental to their effector functions by down-regulating surface expression of CD16 and CD62L.
Blood | 2012
Michelle K. Gleason; Todd Lenvik; Valarie McCullar; Martin Felices; M. Shea O'Brien; Sarah Cooley; Michael R. Verneris; Frank Cichocki; Carol J. Holman; Angela Panoskaltsis-Mortari; Toshiro Niki; Mitsuomi Hirashima; Bruce R. Blazar; Jeffrey S. Miller
NK-cell function is regulated by the integration of signals received from activating and inhibitory receptors. Here we show that a novel immune receptor, T-cell Ig and mucin-containing domain-3 (Tim-3), is expressed on resting human NK cells and is up-regulated on activation. The NK92 NK-cell line engineered to overexpress Tim-3 showed a marked increase in IFN-γ production in the presence of soluble rhGal-9 or Raji tumor cells engineered to express Gal-9. The Tim-3(+) population of low-dose IL-12/IL-18-activated primary NK cells significantly increased IFN-γ production in response to soluble rhGal-9, Gal-9 presented by cell lines, and primary acute myelogenous leukemia (AML) targets that endogenously express Gal-9. This effect is highly specific as Tim-3 Ab blockade significantly decreased IFN-γ production, and Tim-3 cross-linking induced ERK activation and degradation of IκBα. Exposure to Gal-9-expressing target cells had little effect on CD107a degranulation. Reconstituted NK cells obtained from patients after hematopoietic cell transplantation had diminished expression of Tim-3 compared with paired donors. This observation correlates with the known IFN-γ defect seen early posttransplantation. In conclusion, we show that Tim-3 functions as a human NK-cell coreceptor to enhance IFN-γ production, which has important implications for control of infectious disease and cancer.
Blood | 2009
Claudio G. Brunstein; John E. Wagner; Daniel J. Weisdorf; Sarah Cooley; Harriet Noreen; Juliet N. Barker; Todd E. DeFor; Michael R. Verneris; Bruce R. Blazar; Jeffrey S. Miller
We examined the clinical impact of killer-immunoglobulin receptor-ligand (KIR-L) mismatch in 257 recipients of single (n = 91) or double (n = 166) unit umbilical cord blood (UCB) grafts after myeloablative (n = 155) or reduced intensity (n = 102) conditioning regimens. Analyses of double unit grafts considered the KIR-L match status of the dominant engrafting unit. After myeloablative conditioning, KIR-L mismatch had no effect on grade III-IV acute graft-versus-host disease (GVHD), transplantation-related mortality (TRM), relapse, and survival. In contrast, after reduced intensity conditioning, KIR-L mismatch between the engrafted unit and the recipient resulted in significantly higher rates of grade III-IV acute GVHD (42% [CI, 27-59] vs 13% [CI, 5-21], P < .01) and TRM (27% [CI, 12%-42%] vs 12% [CI, 5%-19%], P = .03) with inferior survival (32% [CI, 15%-59%] vs 52% [CI, 47%-67%], P = .03). Multivariate analysis identified KIR-L mismatch as the only predictive factor associated with the development of grade III-IV acute GVHD (RR, 1.8 [CI, 1.1-2.9]; P = .02) and demonstrated a significant association between KIR-L mismatch and increased risk of death (RR, 1.8; 95% CI, 1.0-3.1; P = .05). Our results do not support the selection of UCB units based on KIR-L status and suggest that KIR-L mismatching should be avoided in reduced intensity UCB transplantation.
Clinical Cancer Research | 2007
Arkadiusz Z. Dudek; Carla Yunis; Lester I. Harrison; Sandeep Kumar; Ronald Hawkinson; Sarah Cooley; John P. Vasilakos; Kevin S. Gorski; Jeffrey S. Miller
Purpose: Recent advances in the understanding of innate immunity suggest that an orchestrated sequence of events is required to elicit a productive immune response against cancer. We studied the systemic administration of the Toll-like receptor 7 agonist 852A, a small-molecule imidazoquinoline, in patients with advanced cancer. Preclinical studies showed that 852A stimulates plasmacytoid dendritic cells to produce multiple cytokines, such as IFN-α, interleukin-1 receptor antagonist, and IFN-inducible protein-10. Our goal was to define the tolerated dose, pharmacokinetics, pharmacodynamics, and immunologic effects of 852A in humans. Experimental Design: Eligible adult patients with refractory solid organ tumors received i.v. 852A thrice weekly for 2 weeks. Patients who had responses or stable disease were eligible for additional cycles. Results: Twenty-five patients (median age, 55.0 years; 72% male) were enrolled in six cohorts at dose levels of 0.15 to 2.0 mg/m2. Serum drug levels showed dose proportionality and no evidence of drug accumulation. The maximum tolerated dose was 1.2 mg/m2; higher doses were limited by fatigue and constitutional symptoms. Increases in IFN-α, interleukin-1 receptor antagonist, and IFN-inducible protein-10, immunologic activity, and clinical symptoms were observed in all patients receiving dose levels ≥0.6 mg/m2. Significant correlations were found between pharmacodynamic biomarkers and pharmacokinetic variables, and an objective clinical response was seen. Conclusions: 852A was safely administered i.v. at doses up to 1.2 mg/m2 thrice weekly for 2 weeks with transient or reversible adverse effects. This novel Toll-like receptor 7 agonist is biologically active and holds promise for stimulating innate immune responses. Future trials are warranted to assess its therapeutic role in patients with cancer.