Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah E. Bohndiek is active.

Publication


Featured researches published by Sarah E. Bohndiek.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors.

Ferdia A. Gallagher; Mikko I. Kettunen; De-En Hu; Pernille Rose Jensen; René in ‘t Zandt; Magnus Karlsson; Anna Gisselsson; Sarah K. Nelson; Timothy H. Witney; Sarah E. Bohndiek; Georg Hansson; Torben Peitersen; Mathilde H. Lerche; Kevin M. Brindle

Dynamic nuclear polarization of 13C-labeled cell substrates has been shown to massively increase their sensitivity to detection in NMR experiments. The sensitivity gain is sufficiently large that if these polarized molecules are injected intravenously, their spatial distribution and subsequent conversion into other cell metabolites can be imaged. We have used this method to image the conversion of fumarate to malate in a murine lymphoma tumor in vivo after i.v. injection of hyperpolarized [1,4-13C2]fumarate. In isolated lymphoma cells, the rate of labeled malate production was unaffected by coadministration of succinate, which competes with fumarate for transport into the cell. There was, however, a correlation with the percentage of cells that had lost plasma membrane integrity, suggesting that the production of labeled malate from fumarate is a sensitive marker of cellular necrosis. Twenty-four hours after treating implanted lymphoma tumors with etoposide, at which point there were significant levels of tumor cell necrosis, there was a 2.4-fold increase in hyperpolarized [1,4-13C2]malate production compared with the untreated tumors. Therefore, the formation of hyperpolarized 13C-labeled malate from [1,4-13C2]fumarate appears to be a sensitive marker of tumor cell death in vivo and could be used to detect the early response of tumors to treatment. Given that fumarate is an endogenous molecule, this technique has the potential to be used clinically.


Magnetic Resonance in Medicine | 2011

Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy.

Kevin M. Brindle; Sarah E. Bohndiek; Ferdia A. Gallagher; Mikko I. Kettunen

Dynamic nuclear polarization is an emerging technique for increasing the sensitivity of magnetic resonance imaging and spectroscopy, particularly for low‐γ nuclei. The technique has been applied recently to a number of 13C‐labeled cell metabolites in biological systems: the increase in signal‐to‐noise allows the spatial distribution of an injected molecule to be imaged as well as its metabolic product or products. This review highlights the most significant molecules investigated to date in preclinical cancer models, either in terms of their demonstrated metabolism in vivo or the biological processes that they can probe. In particular, label exchange between hyperpolarized 13C‐labeled pyruvate and lactate, catalyzed by lactate dehydrogenase, has been shown to have a number of potential applications. Finally, techniques to image these molecules are also discussed as well as methods that may extend the lifetime of the hyperpolarized signal. Hyperpolarized magnetic resonance imaging and magnetic resonance spectroscopic imaging have shown great promise for the imaging of cancer in preclinical work, both for diagnosis and for monitoring therapy response. If the challenges in translating this technique to human imaging can be overcome, then it has the potential to significantly alter the management of cancer patients. Magn Reson Med, 2011.


Nature Methods | 2016

Contrast agents for molecular photoacoustic imaging

Judith Weber; Paul C Beard; Sarah E. Bohndiek

Photoacoustic imaging (PAI) is an emerging tool that bridges the traditional depth limits of ballistic optical imaging and the resolution limits of diffuse optical imaging. Using the acoustic waves generated in response to the absorption of pulsed laser light, it provides noninvasive images of absorbed optical energy density at depths of several centimeters with a resolution of ∼100 μm. This versatile and scalable imaging modality has now shown potential for molecular imaging, which enables visualization of biological processes with systemically introduced contrast agents. Understanding the relative merits of the vast range of contrast agents available, from small-molecule dyes to gold and carbon nanostructures to liposome encapsulations, is a considerable challenge. Here we critically review the physical, chemical and biochemical characteristics of the existing photoacoustic contrast agents, highlighting key applications and present challenges for molecular PAI.


Journal of the American Chemical Society | 2011

Hyperpolarized [1-13C]-Ascorbic and Dehydroascorbic Acid: Vitamin C as a Probe for Imaging Redox Status in Vivo

Sarah E. Bohndiek; Mikko I. Kettunen; De-En Hu; Brett W. C. Kennedy; Joan Boren; Ferdia A. Gallagher; Kevin M. Brindle

Dynamic nuclear polarization (DNP) of 13C-labeled metabolic substrates in vitro and their subsequent intravenous administration allow both the location of the hyperpolarized substrate and the dynamics of its subsequent conversion into other metabolic products to be detected in vivo. We report here the hyperpolarization of [1-13C]-ascorbic acid (AA) and [1-13C]-dehydroascorbic acid (DHA), the reduced and oxidized forms of vitamin C, respectively, and evaluate their performance as probes of tumor redox state. Solution-state polarization of 10.5 ± 1.3% was achieved for both forms at pH 3.2, whereas at pH 7.0, [1-13C]-AA retained polarization of 5.1 ± 0.6% and [1-13C]-DHA retained 8.2 ± 1.1%. The spin–lattice relaxation times (T1s) for these labeled nuclei are long at 9.4 T: 15.9 ± 0.7 s for AA and 20.5 ± 0.9 s for DHA. Extracellular oxidation of [1-13C]-AA and intracellular reduction of [1-13C]-DHA were observed in suspensions of murine lymphoma cells. The spontaneous reaction of DHA with the cellular antioxidant glutathione was monitored in vitro and was approximately 100-fold lower than the rate observed in cell suspensions, indicating enzymatic involvement in the intracellular reduction. [1-13C]-DHA reduction was also detected in lymphoma tumors in vivo. In contrast, no detectable oxidation of [1-13C]-AA was measured in the same tumors, consistent with the notion that tumors maintain a reduced microenvironment. This study demonstrates that hyperpolarized 13C-labeled vitamin C could be used as a noninvasive biomarker of redox status in vivo, which has the potential to translate to the clinic.


British Journal of Cancer | 2010

Detecting treatment response in a model of human breast adenocarcinoma using hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate

Timothy H. Witney; Mikko I. Kettunen; De-En Hu; Ferdia A. Gallagher; Sarah E. Bohndiek; Napolitano R; Kevin M. Brindle

Background:The recent introduction of a dynamic nuclear polarisation technique has permitted noninvasive imaging of tumour cell metabolism in vivo following intravenous administration of 13C-labelled cell substrates.Methods:Changes in hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate metabolism were evaluated in both MDA-MB-231 cells and in implanted MDA-MB-231 tumours following doxorubicin treatment.Results:Treatment of MDA-MB-231 cells resulted in the induction of apoptosis, which was accompanied by a decrease in hyperpolarised 13C label flux between [1-13C]pyruvate and lactate, which was correlated with a decrease in the cellular NAD(H) coenzyme pool. There was also an increase in the rate of fumarate conversion to malate, which accompanied the onset of cellular necrosis. In vivo, the decrease in 13C label exchange between pyruvate and lactate and the increased flux between fumarate and malate, following drug treatment, were shown to occur in the absence of any detectable change in tumour size.Conclusion:We show here that the early responses of a human breast adenocarcinoma tumour model to drug treatment can be followed by administration of both hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate. These techniques could be used, therefore, in the clinic to detect the early responses of breast tumours to treatment.


Magnetic Resonance in Medicine | 2010

Magnetization transfer measurements of exchange between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in a murine lymphoma

Mikko I. Kettunen; De-En Hu; Timothy H. Witney; Rebekah McLaughlin; Ferdia A. Gallagher; Sarah E. Bohndiek; Sam E. Day; Kevin M. Brindle

Measurements of the conversion of hyperpolarized [1‐13C]pyruvate into lactate, in the reaction catalyzed by lactate dehydrogenase, have shown promise as a metabolic marker for the presence of disease and response to treatment. However, it is unclear whether this represents net flux of label from pyruvate to lactate or exchange of isotope between metabolites that are close to chemical equilibrium. Using saturation and inversion transfer experiments, we show that there is significant exchange of label between lactate and pyruvate in a murine lymphoma in vivo. The rate constants estimated from the magnetization transfer experiments, at specific points during the time course of label exchange, were similar to those obtained by fitting the changes in peak intensities during the entire exchange time course to a kinetic model for two‐site exchange. These magnetization transfer experiments may therefore provide an alternative and more rapid way of estimating flux between pyruvate and lactate to serial measurements of pyruvate and lactate 13C peak intensities following injection of hyperpolarized [1‐13C]pyruvate. Magn Reson Med 63:872–880, 2010.


Proceedings of the National Academy of Sciences of the United States of America | 2013

A small animal Raman instrument for rapid, wide-area, spectroscopic imaging

Sarah E. Bohndiek; Ashwin Wagadarikar; Cristina Zavaleta; Dominique Van de Sompel; Ellis Garai; Jesse V. Jokerst; Siavash Yazdanfar; Sanjiv S. Gambhir

Raman spectroscopy, amplified by surface enhanced Raman scattering (SERS) nanoparticles, is a molecular imaging modality with ultra-high sensitivity and the unique ability to multiplex readouts from different molecular targets using a single wavelength of excitation. This approach holds exciting prospects for a range of applications in medicine, including identification and characterization of malignancy during endoscopy and intraoperative image guidance of surgical resection. The development of Raman molecular imaging with SERS nanoparticles is presently limited by long acquisition times, poor spatial resolution, small field of view, and difficulty in animal handling with existing Raman spectroscopy instruments. Our goal is to overcome these limitations by designing a bespoke instrument for Raman molecular imaging in small animals. Here, we present a unique and dedicated small-animal Raman imaging instrument that enables rapid, high-spatial resolution, spectroscopic imaging over a wide field of view (> 6 cm2), with simplified animal handling. Imaging of SERS nanoparticles in small animals demonstrated that this small animal Raman imaging system can detect multiplexed SERS signals in both superficial and deep tissue locations at least an order of magnitude faster than existing systems without compromising sensitivity.


Clinical Cancer Research | 2013

Molecular Photoacoustic Imaging of Follicular Thyroid Carcinoma

Jelena Levi; Sri-Rajashekar Kothapalli; Sarah E. Bohndiek; Joon-Kee Yoon; Anca Dragulescu-Andrasi; Carsten Krabbe Nielsen; Aleksandra Tisma; Sunil Bodapati; Gayatri Gowrishankar; Xinrui Yan; Carmel T. Chan; Daniela Starcevic; Sanjiv S. Gambhir

Purpose: To evaluate the potential of targeted photoacoustic imaging as a noninvasive method for detection of follicular thyroid carcinoma. Experimental Design: We determined the presence and activity of two members of matrix metalloproteinase family (MMP), MMP-2 and MMP-9, suggested as biomarkers for malignant thyroid lesions, in FTC133 thyroid tumors subcutaneously implanted in nude mice. The imaging agent used to visualize tumors was MMP-activatable photoacoustic probe, Alexa750-CXeeeeXPLGLAGrrrrrXK-BHQ3. Cleavage of the MMP-activatable agent was imaged after intratumoral and intravenous injections in living mice optically, observing the increase in Alexa750 fluorescence, and photoacoustically, using a dual-wavelength imaging method. Results: Active forms of both MMP-2 and MMP-9 enzymes were found in FTC133 tumor homogenates, with MMP-9 detected in greater amounts. The molecular imaging agent was determined to be activated by both enzymes in vitro, with MMP-9 being more efficient in this regard. Both optical and photoacoustic imaging showed significantly higher signal in tumors of mice injected with the active agent than in tumors injected with the control, nonactivatable, agent. Conclusions: With the combination of high spatial resolution and signal specificity, targeted photoacoustic imaging holds great promise as a noninvasive method for early diagnosis of follicular thyroid carcinomas. Clin Cancer Res; 19(6); 1494–502. ©2013 AACR.


Molecular Cancer Therapeutics | 2010

Detection of Tumor Response to a Vascular Disrupting Agent by Hyperpolarized 13C Magnetic Resonance Spectroscopy

Sarah E. Bohndiek; Mikko I. Kettunen; De-En Hu; Timothy H. Witney; Brett W. C. Kennedy; Ferdia A. Gallagher; Kevin M. Brindle

Nuclear spin hyperpolarization can dramatically increase the sensitivity of the 13C magnetic resonance experiment, allowing dynamic measurements of the metabolism of hyperpolarized 13C-labeled substrates in vivo. Here, we report a preclinical study of the response of lymphoma tumors to the vascular disrupting agent (VDA), combretastatin-A4-phosphate (CA4P), as detected by measuring changes in tumor metabolism of hyperpolarized [1-13C]pyruvate and [1,4-13C2]fumarate. These measurements were compared with dynamic contrast agent–enhanced magnetic resonance imaging (DCE-MRI) measurements of tumor vascular function and diffusion-weighted MRI (DW-MRI) measurements of the tumor cell necrosis that resulted from subsequent loss of tumor perfusion. The rate constant describing flux of hyperpolarized 13C label between [1-13C]pyruvate and lactate was decreased by 34% within 6 hours of CA4P treatment and remained at this lower level at 24 hours. The rate constant describing production of labeled malate from hyperpolarized [1,4-13C2]fumarate increased 1.6-fold and 2.5-fold at 6 and 24 hours after treatment, respectively, and correlated with the degree of necrosis detected in histologic sections. Although DCE-MRI measurements showed a substantial reduction in perfusion at 6 hours after treatment, which had recovered by 24 hours, DW-MRI showed no change in the apparent diffusion coefficient of tumor water at 6 hours after treatment, although there was a 32% increase at 24 hours (P < 0.02) when regions of extensive necrosis were observed by histology. Measurements of hyperpolarized [1-13C]pyruvate and [1,4-13C2]fumarate metabolism may provide, therefore, a more sustained and sensitive indicator of response to a VDA than DCE-MRI or DW-MRI, respectively. Mol Cancer Ther; 9(12); 3278–88. ©2010 AACR.


Cancer Research | 2012

Hyperpolarized (13)C spectroscopy detects early changes in tumor vasculature and metabolism after VEGF neutralization.

Sarah E. Bohndiek; Mikko I. Kettunen; De-En Hu; Kevin M. Brindle

No clinically validated biomarkers exist to image tumor responses to antiangiogenic therapy. Here, we report the utility of hyperpolarized (13)C magnetic resonance spectroscopy (MRS) to detect the early effects of anti-VEGF therapy. In two colorectal cancer xenograft models, displaying differential sensitivity to VEGF blockade, we compared hyperpolarized MRS with measurements of tumor perfusion using dynamic contrast agent-enhanced (DCE)-MRI and tumor cellularity using diffusion-weighted MRI of the apparent diffusion coefficient (ADC) of tissue water. In tumors sensitive to anti-VEGF therapy, (13)C flux between hyperpolarized [1-(13)C]pyruvate and [1-(13)C]lactate decreased after anti-VEGF therapy and correlated with reduced perfusion. Production of [1,4-(13)C(2)]malate from hyperpolarized [1,4-(13)C(2)]fumarate increased in parallel with tumor cell necrosis, preceding any change in tumor ADC. In contrast, tumors that were less sensitive to anti-VEGF therapy showed an increase in (13)C flux from hyperpolarized [1-(13)C]pyruvate and an increase in uptake of a gadolinium contrast agent, whereas tumor ADC decreased. Increased label flux could be explained by vascular normalization after VEGF blockade, increasing delivery of hyperpolarized [1-(13)C]pyruvate as observed. Despite the minimal response of these tumors to treatment, with only a minor increase in necrosis observed histologically, production of [1,4-(13)C(2)]malate from hyperpolarized [1,4-(13)C(2)]fumarate in therapy-resistant tumors also increased. Together, our findings show that hyperpolarized (13)C MRS detects early responses to anti-VEGF therapy, including vascular normalization or vascular destruction and cell death.

Collaboration


Dive into the Sarah E. Bohndiek's collaboration.

Top Co-Authors

Avatar

James Joseph

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Turchetta

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Clark

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. D. Arvanitis

University College London

View shared research outputs
Top Co-Authors

Avatar

Mikko I. Kettunen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge