Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah E.M. Herman is active.

Publication


Featured researches published by Sarah E.M. Herman.


Blood | 2011

CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability

Brian Lannutti; Sarah Meadows; Sarah E.M. Herman; Adam Kashishian; Bart H. Steiner; Amy J. Johnson; John C. Byrd; Jeffrey W. Tyner; Marc Loriaux; Mike Deininger; Brian J. Druker; Kamal D. Puri; Roger Ulrich; Neill A. Giese

Phosphatidylinositol-3-kinase p110δ serves as a central integration point for signaling from cell surface receptors known to promote malignant B-cell proliferation and survival. This provides a rationale for the development of small molecule inhibitors that selectively target p110δ as a treatment approach for patients with B-cell malignancies. We thus identified 5-fluoro-3-phenyl-2-[(S)-1-(9H-purin-6-ylamino)-propyl]-3H-quinazolin-4-one (CAL-101), a highly selective and potent p110δ small molecule inhibitor (half-maximal effective concentration [EC(50)] = 8nM). Using tumor cell lines and primary patient samples representing multiple B-cell malignancies, we have demonstrated that constitutive phosphatidylinositol-3-kinase pathway activation is p110δ-dependent. CAL-101 blocked constitutive phosphatidylinositol-3-kinase signaling, resulting in decreased phosphorylation of Akt and other downstream effectors, an increase in poly(ADP-ribose) polymerase and caspase cleavage and an induction of apoptosis. These effects have been observed across a broad range of immature and mature B-cell malignancies, thereby providing a rationale for the ongoing clinical evaluation of CAL-101.


Blood | 2011

Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765

Sarah E.M. Herman; Amber Gordon; Erin Hertlein; Asha Ramanunni; Xiaoli Zhang; Samantha Jaglowski; Joseph M. Flynn; Jeffrey A. Jones; Kristie A. Blum; Joseph J. Buggy; Ahmed Hamdy; Amy J. Johnson; John C. Byrd

B-cell receptor (BCR) signaling is aberrantly activated in chronic lymphocytic leukemia (CLL). Bruton tyrosine kinase (BTK) is essential to BCR signaling and in knockout mouse models its mutation has a relatively B cell-specific phenotype. Herein, we demonstrate that BTK protein and mRNA are significantly over expressed in CLL compared with normal B cells. Although BTK is not always constitutively active in CLL cells, BCR or CD40 signaling is accompanied by effective activation of this pathway. Using the irreversible BTK inhibitor PCI-32765, we demonstrate modest apoptosis in CLL cells that is greater than that observed in normal B cells. No influence of PCI-32765 on T-cell survival is observed. Treatment of CD40 or BCR activated CLL cells with PCI-32765 results in inhibition of BTK tyrosine phosphorylation and also effectively abrogates downstream survival pathways activated by this kinase including ERK1/2, PI3K, and NF-κB. In addition, PCI-32765 inhibits activation-induced proliferation of CLL cells in vitro, and effectively blocks survival signals provided externally to CLL cells from the microenvironment including soluble factors (CD40L, BAFF, IL-6, IL-4, and TNF-α), fibronectin engagement, and stromal cell contact. Based on these collective data, future efforts targeting BTK with the irreversible inhibitor PCI-32765 in clinical trials of CLL patients is warranted.


Blood | 2010

Phosphatidylinositol 3-kinase-δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals.

Sarah E.M. Herman; Amber Gordon; Amy J. Wagner; Nyla A. Heerema; Weiqiang Zhao; Joseph M. Flynn; Jeffrey A. Jones; Leslie A. Andritsos; Kamal D. Puri; Brian Lannutti; Neill A. Giese; Xiaoli Zhang; Lai Wei; John C. Byrd; Amy J. Johnson

Targeted therapy with imatinib in chronic myeloid leukemia (CML) prompted a new treatment paradigm. Unlike CML, chronic lymphocytic leukemia (CLL) lacks an aberrant fusion protein kinase but instead displays increased phosphatidylinositol 3-kinase (PI3K) activity. To date, PI3K inhibitor development has been limited because of the requirement of this pathway for many essential cellular functions. Identification of the hematopoietic-selective isoform PI3K-δ unlocks a new therapeutic potential for B-cell malignancies. Herein, we demonstrate that PI3K has increased enzymatic activity and that PI3K-δ is expressed in CLL cells. A PI3K-δ selective inhibitor CAL-101 promoted apoptosis in primary CLL cells ex vivo in a dose- and time-dependent fashion that was independent of common prognostic markers. CAL-101-mediated cytotoxicity was caspase dependent and was not diminished by coculture on stromal cells. In addition, CAL-101 abrogated protection from spontaneous apoptosis induced by B cell-activating factors CD40L, TNF-α, and fibronectin. In contrast to malignant cells, CAL-101 does not promote apoptosis in normal T cells or natural killer cells, nor does it diminish antibody-dependent cellular cytotoxicity. However, CAL-101 did decrease activated T-cell production of various inflammatory and antiapoptotic cytokines. Collectively, these studies provide rationale for the clinical development of CAL-101 as a first-in-class targeted therapy for CLL and related B-cell lymphoproliferative disorders.


Blood | 2014

Ibrutinib antagonizes rituximab-dependent NK cell–mediated cytotoxicity

Holbrook Kohrt; Idit Sagiv-Barfi; Sarwish Rafiq; Sarah E.M. Herman; Jonathon P. Butchar; Carolyn Cheney; Xiaoli Zhang; Joseph J. Buggy; Natarajan Muthusamy; Ronald Levy; Amy J. Johnson; John C. Byrd

To the editor: Ibrutinib is an irreversible inhibitor of Bruton’s tyrosine kinase (BTK) with promising activity in CD20+ B-cell malignancies including recent US Food and Drug Administration approval in mantle cell lymphoma.[1][1] Given the homology between BTK and interleukin-2 inducible tyrosine


Blood | 2014

Ibrutinib inhibits BCR and NF-κB signaling and reduces tumor proliferation in tissue-resident cells of patients with CLL

Sarah E.M. Herman; Rashida Z. Mustafa; Jennifer Gyamfi; Stefania Pittaluga; Stella Chang; Betty Y. Chang; Mohammed Farooqui; Adrian Wiestner

Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental factors for proliferation and survival. In particular, tissue-resident CLL cells show prominent activation of both B-cell receptor (BCR) and NF-κB pathways. We evaluated the in vivo effects of ibrutinib, a Bruton tyrosine kinase (BTK) inhibitor on tumor cell activation and proliferation in the blood, lymph node, and bone marrow of patients with CLL. Applying validated pathway-specific gene signatures, we detected a rapid and sustained downregulation of BCR and NF-κB signaling in CLL cells from both the peripheral blood and tissue compartments during ibrutinib treatment. Ibrutinib reduced phosphorylation of PLCγ2 and ERK and decreased nuclear protein expression of NF-κB p50. Ibrutinib significantly decreased tumor proliferation and expression of surface activation markers CD69 and CD86, independent of prognostic factors such as IGHV mutational status, chromosome 17p deletion, or prior treatment history. Interestingly, stronger inhibition of BCR signaling in lymph node resident CLL cells after one dose of ibrutinib was associated with a higher rate of nodal response at the end of cycle 2. Together, these data validate on-target effects of BTK inhibition in the tissue compartments and demonstrate that ibrutinib effectively inhibits pathways that promote tumor cell activation and proliferation in vivo. This study is registered at www.clinicaltrials.gov as #NCT01500733.


Blood | 2011

The role of phosphatidylinositol 3-kinase-δ in the immunomodulatory effects of lenalidomide in chronic lymphocytic leukemia

Sarah E.M. Herman; Rosa Lapalombella; Amber Gordon; Asha Ramanunni; Kristie A. Blum; Jeffrey A. Jones; Xiaoli Zhang; Brian Lannutti; Kamal D. Puri; Natarajan Muthusamy; John C. Byrd; Amy J. Johnson

In patients with chronic lymphocytic leukemia (CLL), lenalidomide can promote humoral immune responses but also induces a distinct disease-specific toxicity of tumor flare and cytokine release. These CLL-specific events result from increased expression of costimulatory molecules on B cells. Here we demonstrate that lenalidomide activation of CLL cells depends on the phosphatidylinositol 3-kinase p110δ (PI3K-δ) pathway. Inhibition of PI3K-δ signaling by the PI3K-δ-inhibiting drug, CAL-101, or by siRNA knockdown of p110δ, abrogates CLL cell activation, costimulatory molecule expression, and vascular endothelial growth factor and basic fibroblast growth factor gene expression that is induced by lenalidomide. In addition, CAL-101 attenuates lenalidomide-mediated increases in immunoglobulin M production by normal B cells. Collectively, these data demonstrate the importance of PI3K-δ signaling for lenalidomide immune modulation. These findings may guide development of strategies for the treatment of CLL that combine lenalidomide with CAL-101, with other inhibitors of the PI3K-δ pathway, or with other agents that target downstream kinases of this signaling pathway.


Blood | 2012

ER stress and autophagy: new discoveries in the mechanism of action and drug resistance of the cyclin-dependent kinase inhibitor flavopiridol

Emilia Mahoney; David M. Lucas; Sneha V. Gupta; Amy J. Wagner; Sarah E.M. Herman; Lisa L. Smith; Yuh-Ying Yeh; Leslie A. Andritsos; Jeffrey A. Jones; Joseph M. Flynn; Kristie A. Blum; Xiaoli Zhang; Amy Lehman; Hui Kong; Metin N. Gurcan; Michael R. Grever; Amy J. Johnson; John C. Byrd

Cyclin dependent kinase (CDK) inhibitors, such as flavopiridol, demonstrate significant single-agent activity in chronic lymphocytic leukemia (CLL), but the mechanism of action in these nonproliferating cells is unclear. Here we demonstrate that CLL cells undergo autophagy after treatment with therapeutic agents, including fludarabine, CAL-101, and flavopiridol as well as the endoplasmic reticulum (ER) stress-inducing agent thapsigargin. The addition of chloroquine or siRNA against autophagy components enhanced the cytotoxic effects of flavopiridol and thapsigargin, but not the other agents. Similar to thapsigargin, flavopiridol robustly induces a distinct pattern of ER stress in CLL cells that contributes to cell death through IRE1-mediated activation of ASK1 and possibly downstream caspases. Both autophagy and ER stress were documented in tumor cells from CLL patients receiving flavopiridol. Thus, CLL cells undergo autophagy after multiple stimuli, including therapeutic agents, but only with ER stress mediators and CDK inhibitors is autophagy a mechanism of resistance to cell death. These findings collectively demonstrate, for the first time, a novel mechanism of action (ER stress) and drug resistance (autophagy) for CDK inhibitors, such as flavopiridol in CLL, and provide avenues for new therapeutic combination approaches in this disease.


Blood | 2015

Partial reconstitution of humoral immunity and fewer infections in patients with chronic lymphocytic leukemia treated with ibrutinib.

Clare Sun; Xin Tian; Yuh Shan Lee; Sreenivasulu Gunti; Andrew Lipsky; Sarah E.M. Herman; Dalia A. Salem; Maryalice Stetler-Stevenson; Constance Yuan; Lela Kardava; Susan Moir; Irina Maric; Janet Valdez; Susan Soto; Gerald Marti; Mohammed Farooqui; Abner Louis Notkins; Adrian Wiestner; Georg Aue

Chronic lymphocytic leukemia (CLL) is characterized by immune dysregulation, often including hypogammaglobulinemia, which contributes to a high rate of infections and morbidity. Ibrutinib, a covalent inhibitor of Bruton tyrosine kinase (BTK), inhibits B-cell receptor signaling and is an effective, US Food and Drug Administration (FDA)-approved treatment of CLL. Inactivating germline mutations in BTK cause a severe B-cell defect and agammaglobulinemia. Therefore, we assessed the impact of ibrutinib on immunoglobulin levels, normal B cells, and infection rate in patients with CLL treated with single-agent ibrutinib on a phase 2 investigator-initiated trial. Consistent with previous reports, immunoglobulin G (IgG) levels remained stable during the first 6 months on treatment, but decreased thereafter. In contrast, there were a transient increase in IgM and a sustained increase in IgA (median increase 45% at 12 months, P < .0001). To distinguish the effects on clonal B cells from normal B cells, we measured serum free light chains (FLCs). In κ-clonal CLL cases, clonal (κ) FLCs were elevated at baseline and normalized by 6 months. Nonclonal (λ) FLCs, which were often depressed at baseline, increased, suggesting the recovery of normal B cells. Consistently, we observed normal B-cell precursors in the bone marrow and an increase in normal B-cell numbers in the peripheral blood. Patients with superior immune reconstitution, as defined by an increase in serum IgA of ≥50% from baseline to 12 months, had a significantly lower rate of infections (P = .03). These data indicate that ibrutinib allows for a clinically meaningful recovery of humoral immune function in patients with CLL. This trial was registered at www.clinicaltrials.gov as #NCT015007330.


Blood | 2013

Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia

Bo Yu; Yicheng Mao; Li Yuan Bai; Sarah E.M. Herman; Xinmei Wang; Asha Ramanunni; Yan Jin; Xiaokui Mo; Carolyn Cheney; Kenneth K. Chan; David Jarjoura; Guido Marcucci; Robert J. Lee; John C. Byrd; L. James Lee; Natarajan Muthusamy

Several RNA-targeted therapeutics, including antisense oligonucleotides (ONs), small interfering RNAs, and miRNAs, constitute immunostimulatory CpG motifs as an integral part of their design. The limited success with free antisense ONs in hematologic malignancies in recent clinical trials has been attributed to the CpG motif-mediated, TLR-induced prosurvival effects and inefficient target modulation in desired cells. In an attempt to diminish their off-target prosurvival and proinflammatory effects and specific delivery, as a proof of principle, in the present study, we developed an Ab-targeted liposomal delivery strategy using a clinically relevant CD20 Ab (rituximab)-conjugated lipopolyplex nanoparticle (RIT-INP)- and Bcl-2-targeted antisense G3139 as archetypical antisense therapeutics. The adverse immunostimulatory responses were abrogated by selective B cell-targeted delivery and early endosomal compartmentalization of G3139-encapsulated RIT-INPs, resulting in reduced NF-κB activation, robust Bcl-2 down-regulation, and enhanced sensitivity to fludarabine-induced cytotoxicity. Furthermore, significant in vivo therapeutic efficacy was noted after RIT-INP-G3139 administration in a disseminated xenograft leukemia model. The results of the present study demonstrate that CD20-targeted delivery overcomes the immunostimulatory properties of CpG-containing ON therapeutics and improves efficient gene silencing and in vivo therapeutic efficacy for B-cell malignancies. The broader implications of similar approaches in overcoming immunostimulatory properties of RNA-directed therapeutics in hematologic malignancies are also discussed.


Clinical Cancer Research | 2016

Disruption of in vivo Chronic Lymphocytic Leukemia Tumor–Microenvironment Interactions by Ibrutinib – Findings from an Investigator-Initiated Phase II Study

Carsten U. Niemann; Sarah E.M. Herman; Irina Maric; Julio Gomez-Rodriguez; Angélique Biancotto; Betty Y. Chang; Sabrina Martyr; Maryalice Stetler-Stevenson; Constance Yuan; Katherine R. Calvo; Raul C. Braylan; Janet Valdez; Yuh Shan Lee; Deanna H. Wong; Jade Jones; Clare Sun; Gerald E. Marti; Mohammed Farooqui; Adrian Wiestner

Purpose: Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental interactions for proliferation and survival that are at least partially mediated through B-cell receptor (BCR) signaling. Ibrutinib, a Bruton tyrosine kinase inhibitor, disrupts BCR signaling and leads to the egress of tumor cells from the microenvironment. Although the on-target effects on CLL cells are well defined, the impact on the microenvironment is less well studied. We therefore sought to characterize the in vivo effects of ibrutinib on the tumor microenvironment. Experimental Design: Patients received single-agent ibrutinib on an investigator-initiated phase II trial. Serial blood and tissue samples were collected pretreatment and during treatment. Changes in cytokine levels, cellular subsets, and microenvironmental interactions were assessed. Results: Serum levels of key chemokines and inflammatory cytokines decreased significantly in patients on ibrutinib. Furthermore, ibrutinib treatment decreased circulating tumor cells and overall T-cell numbers. Most notably, a reduced frequency of the Th17 subset of CD4+ T cells was observed concurrent with reduced expression of activation markers and PD-1 on T cells. Consistent with direct inhibition of T cells, ibrutinib inhibited Th17 differentiation of murine CD4+ T cells in vitro. Finally, in the bone marrow microenvironment, we found that ibrutinib disaggregated the interactions of macrophages and CLL cells, inhibited secretion of CXCL13, and decreased the chemoattraction of CLL cells. Conclusions: In conjunction with inhibition of BCR signaling, these changes in the tumor microenvironment likely contribute to the antitumor activity of ibrutinib and may impact the efficacy of immunotherapeutic strategies in patients with CLL. Clin Cancer Res; 22(7); 1572–82. ©2015 AACR. See related commentary by Bachireddy and Wu, p. 1547

Collaboration


Dive into the Sarah E.M. Herman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge