Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah E. Null is active.

Publication


Featured researches published by Sarah E. Null.


PLOS ONE | 2010

Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

Sarah E. Null; Joshua H. Viers; Jeffrey F. Mount

This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2°, 4°, and 6°C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds.


Journal of Water Resources Planning and Management | 2015

Optimizing Selective Withdrawal from Reservoirs to Manage Downstream Temperatures with Climate Warming

David E. Rheinheimer; Sarah E. Null; Jay R. Lund

AbstractSelective withdrawal systems can take advantage of thermal stratification in reservoirs to manage downstream temperatures. Selective withdrawal might also help adapt operations to environmental changes, such as increased stream temperatures expected with climate change. This exploratory study develops a linear programming model to release water from different thermal pools in reservoirs to minimize deviations from target downstream temperatures. The model is applied with representative thermal dynamics to Lake Spaulding, a multipurpose reservoir on the South Fork Yuba River in California with climate warming represented by uniform increases in air temperature. Optimization results for thermal pool management with selective withdrawal are compared to a single, low-level outlet release model. Optimal selective withdrawal hedges the winter release of cold water to decrease summer stream temperatures. With climate warming, selective withdrawal can help lessen stream warming in the summer but at a cost...


Earth’s Future | 2015

iSAW: Integrating Structure, Actors, and Water to Study Socio-Hydro-Ecological Systems

Rebecca L. Hale; Andrea Armstrong; Michelle A. Baker; Sean Bedingfield; David Betts; Caleb A. Buahin; Martin Buchert; Todd A. Crowl; R. Ryan Dupont; James R. Ehleringer; Joanna Endter-Wada; Courtney G. Flint; Jacqualine Grant; Sarah Jack Hinners; Jeffery S. Horsburgh; Douglas Jackson-Smith; Amber Spackman Jones; Carlos V Licon; Sarah E. Null; Augustina Odame; Diane E. Pataki; David E. Rosenberg; Madlyn Runburg; Philip Stoker; Courtenay Strong

Urbanization, climate, and ecosystem change represent major challenges for managing water resources. Although water systems are complex, a need exists for a generalized representation of these systems to identify important components and linkages to guide scientific inquiry and aid water management. We developed an integrated Structure-Actor-Water framework (iSAW) to facilitate the understanding of and transitions to sustainable water systems. Our goal was to produce an interdisciplinary framework for water resources research that could address management challenges across scales (e.g., plot to region) and domains (e.g., water supply and quality, transitioning, and urban landscapes). The framework was designed to be generalizable across all human–environment systems, yet with sufficient detail and flexibility to be customized to specific cases. iSAW includes three major components: structure (natural, built, and social), actors (individual and organizational), and water (quality and quantity). Key linkages among these components include: (1) ecological/hydrologic processes, (2) ecosystem/geomorphic feedbacks, (3) planning, design, and policy, (4) perceptions, information, and experience, (5) resource access and risk, and (6) operational water use and management. We illustrate the flexibility and utility of the iSAW framework by applying it to two research and management problems: understanding urban water supply and demand in a changing climate and expanding use of green storm water infrastructure in a semi-arid environment. The applications demonstrate that a generalized conceptual model can identify important components and linkages in complex and diverse water systems and facilitate communication about those systems among researchers from diverse disciplines.


Science of The Total Environment | 2016

Climate change effects on water allocations with season dependent water rights.

Sarah E. Null; Liana Prudencio

Appropriative water rights allocate surface water to competing users based on seniority. Often water rights vary seasonally with spring runoff, irrigation schedules, or other non-uniform supply and demand. Downscaled monthly Coupled Model Intercomparison Project multi-model, multi-emissions scenario hydroclimate data evaluate water allocation reliability and variability with anticipated hydroclimate change. Californias Tuolumne watershed is a study basin, chosen because water rights are well-defined, simple, and include competing environmental, agricultural, and urban water uses representative of most basins. We assume that dedicated environmental flows receive first priority when mandated by federal law like the Endangered Species Act or hydropower relicensing, followed by senior agricultural water rights, and finally junior urban water rights. Environmental flows vary by water year and include April pulse flows, and senior agricultural water rights are 68% larger during historical spring runoff from April through June. Results show that senior water right holders receive the largest climate-driven reductions in allocated water when peak streamflow shifts from snowmelt-dominated spring runoff to mixed snowmelt- and rainfall-dominated winter runoff. Junior water right holders have higher uncertainty from inter-annual variability. These findings challenge conventional wisdom that water shortages are absorbed by junior water users and suggest that aquatic ecosystems may be disproportionally impaired by hydroclimate change, even when environmental flows receive priority.


PLOS ONE | 2015

How Do Changes to the Railroad Causeway in Utah’s Great Salt Lake Affect Water and Salt Flow?

James S. White; Sarah E. Null; David G. Tarboton

Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah’s Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey’s Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses.


Journal of Water Resources Planning and Management | 2016

Climate-Adaptive Water Year Typing for Instream Flow Requirements in California’s Sierra Nevada

David E. Rheinheimer; Sarah E. Null; Joshua H. Viers

AbstractWater year types (WYTs), whereby years are classified by river runoff quantity compared to historical runoff, are one tool to help make major water management decisions. Increasingly, these decisions include instream flow requirements (IFRs) below dams for river ecosystem management. However, WYTs are typically based on assumptions of stationarity, and are thus rendered less meaningful with climate change. Hydrologic alteration resulting from climate change means that a WYT-based IFR scheme using stationary historical observations might inadvertently result in long-term river management outcomes inconsistent with original water management goals. This study assesses the management implications of assuming hydrologic nonstationarity in a WYT-based IFR scheme in California’s upper Yuba River and demonstrates a rolling period of record as a climate adaptation strategy. The existing, nonadaptive water management scheme leads to vastly different possible water allocation outcomes than originally planned...


Science of The Total Environment | 2019

The cost of addressing saline lake level decline and the potential for water conservation markets

Eric C. Edwards; Sarah E. Null

The worlds saline lakes are shrinking and human water diversions are a significant contributor. While there is increased interest in protecting the ecosystem services provided by these lakes, the cost of protecting water levels has not been estimated. To explore this question we consider the case of Great Salt Lake (Utah, USA) where human diversions from three rivers have caused the lake level to decline during the last century. Recent work has suggested the restoration of inflows is necessary to maintain a target elevation consistent with well-functioning ecosystems. We construct cost estimates of increasing water inflows using conservation cost curves for each river basin. We then compare the cost of uniform cutbacks to cap-and-trade systems which allow intra- and inter-basin trading. The cost of water to permanently implement uniform water right cutbacks to increase inflows by 20% above current levels is


Proceedings of the National Academy of Sciences of the United States of America | 2018

Natural and managed watersheds show similar responses to recent climate change

Darren L. Ficklin; John T. Abatzoglou; Scott M. Robeson; Sarah E. Null; Jason H. Knouft

37.4 million. Costs and cost-savings are sensitive to alternative allocation, inflow, and cost assumptions, and we estimate significant cost reductions from intra-basin water conservation markets (5-54% cost decrease) and inter-basin water conservation markets (22-57% cost decrease).


Climatic Change | 2013

Stream temperature sensitivity to climate warming in California’s Sierra Nevada: impacts to coldwater habitat

Sarah E. Null; Joshua H. Viers; M. L. Deas; Stacy K. Tanaka; Jeffrey F. Mount

Significance Climate change is expected to alter streamflow volume and variability in watersheds throughout the world, which will have impacts on agricultural, aquatic, and urban environments. Human modifications such as the building of reservoirs and the extraction of water for agricultural and urban uses, however, are thought to mask climate-induced changes in streamflow. Using observed streamflow data from over 3,000 sites from 1981 to 2015, this work identifies negative trends in streamflow throughout the southern and western portions of the United States and positive trends across the eastern portion of the United States and Canada. Within these regions, streamflow trends from human-modified sites are similar to unimpacted sites, indicating that the signal of climate change is apparent in all streamflow systems. Changes in climate are driving an intensification of the hydrologic cycle and leading to alterations of natural streamflow regimes. Human disturbances such as dams, land-cover change, and water diversions are thought to obscure climate signals in hydrologic systems. As a result, most studies of changing hydroclimatic conditions are limited to areas with natural streamflow. Here, we compare trends in observed streamflow from natural and human-modified watersheds in the United States and Canada for the 1981–2015 water years to evaluate whether comparable responses to climate change are present in both systems. We find that patterns and magnitudes of trends in median daily streamflow, daily streamflow variability, and daily extremes in human-modified watersheds are similar to those from nearby natural watersheds. Streamflow in both systems show negative trends throughout the southern and western United States and positive trends throughout the northeastern United States, the northern Great Plains, and southern prairies of Canada. The trends in both natural and human-modified watersheds are linked to local trends in precipitation and reference evapotranspiration, demonstrating that water management and land-cover change have not substantially altered the effects of climate change on human-modified watersheds compared with nearby natural watersheds.


Water Resources Research | 2013

In bad waters: Water year classification in nonstationary climates

Sarah E. Null; Joshua H. Viers

Collaboration


Dive into the Sarah E. Null's collaboration.

Top Co-Authors

Avatar

Jay R. Lund

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carson Jeffres

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge