Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Hiom is active.

Publication


Featured researches published by Kevin Hiom.


Nature Genetics | 2005

The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J.

Marieke Levitus; Quinten Waisfisz; Barbara C. Godthelp; Yne de Vries; Shobbir Hussain; Wouter W. Wiegant; Elhaam Elghalbzouri-Maghrani; Jurgen Steltenpool; Martin A. Rooimans; Gerard Pals; Fré Arwert; Christopher G. Mathew; Małgorzata Z. Zdzienicka; Kevin Hiom; Johan P. de Winter; Hans Joenje

The protein predicted to be defective in individuals with Fanconi anemia complementation group J (FA-J), FANCJ, is a missing component in the Fanconi anemia pathway of genome maintenance. Here we identify pathogenic mutations in eight individuals with FA-J in the gene encoding the DEAH-box DNA helicase BRIP1, also called FANCJ. This finding is compelling evidence that the Fanconi anemia pathway functions through a direct physical interaction with DNA.


Nature | 2009

CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle

Maximina H. Yun; Kevin Hiom

The repair of DNA double-strand breaks (DSBs) is tightly regulated during the cell cycle. In G1 phase, the absence of a sister chromatid means that repair of DSBs occurs through non-homologous end-joining or microhomology-mediated end-joining (MMEJ). These pathways often involve loss of DNA sequences at the break site and are therefore error-prone. In late S and G2 phases, even though DNA end-joining pathways remain functional, there is an increase in repair of DSBs by homologous recombination, which is mostly error-free. Consequently, the relative contribution of these different pathways to DSB repair in the cell cycle has a large influence on the maintenance of genetic integrity. It has remained unknown how DSBs are directed for repair by different, potentially competing, repair pathways. Here we identify a role for CtIP (also known as RBBP8) in this process in the avian B-cell line DT40. We establish that CtIP is required not only for repair of DSBs by homologous recombination in S/G2 phase but also for MMEJ in G1. The function of CtIP in homologous recombination, but not MMEJ, is dependent on the phosphorylation of serine residue 327 and recruitment of BRCA1. Cells expressing CtIP protein that cannot be phosphorylated at serine 327 are specifically defective in homologous recombination and have a decreased level of single-stranded DNA after DNA damage, whereas MMEJ remains unaffected. Our data support a model in which phosphorylation of serine 327 of CtIP as cells enter S phase and the recruitment of BRCA1 functions as a molecular switch to shift the balance of DSB repair from error-prone DNA end-joining to error-free homologous recombination.


The EMBO Journal | 2002

Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains.

Donna L. Mallery; Cassandra J. Vandenberg; Kevin Hiom

Loss of the tumour suppressor BRCA1 results in profound chromosomal instability. The fundamental defect underlying this catastrophic phenotype is not yet known. In vivo, BRCA1 forms a heterodimeric complex with BARD1. Both proteins contain an N‐terminal zinc RING‐finger domain which confers E3 ubiquitin ligase activity. We have isolated full‐length human BRCA1/BARD1 complex and have shown that it has a dual E3 ubiquitin ligase activity. First, it mediates the monoubiquitylation of nucleosome core histones in vitro, including the variant histone H2AX that co‐localizes with BRCA1 at sites of DNA damage. Secondly, BRCA1/BARD1 catalyses the formation of multiple polyubiquitin chains on itself. Remarkably, this auto‐polyubiquitylation potentiates the E3 ubiquitin ligase activity of the BRCA1/BARD1 complex >20‐fold. Even though BRCA1 has been reported to associate with a C‐terminal ubiquitin hydrolase, BAP1, this enzyme does not appear to function in the deubiquitylation of the BRCA1/BARD1 complex.


Nature Genetics | 2005

The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair.

Wendy L Bridge; Cassandra J. Vandenberg; Roger Franklin; Kevin Hiom

BRIP1 (also called BACH1) is a DEAH helicase that interacts with the BRCT domain of BRCA1 (refs. 1–6) and has an important role in BRCA1-dependent DNA repair and checkpoint functions. We cloned the chicken ortholog of BRIP1 and established a homozygous knockout in the avian B-cell line DT40. The phenotype of these brip1 mutant cells in response to DNA damage differs from that of brca1 mutant cells and more closely resembles that of fancc mutant cells, with a profound sensitivity to the DNA-crosslinking agent cisplatin and acute cell-cycle arrest in late S-G2 phase. These defects are corrected by expression of human BRIP1 lacking the BRCT-interaction domain. Moreover, in human cells exposed to mitomycin C, short interfering RNA–mediated knock-down of BRIP1 leads to a substantial increase in chromosome aberrations, a characteristic phenotype of cells derived from individuals with Fanconi anemia. Because brip1 mutant cells are proficient for ubiquitination of FANCD2 protein, our data indicate that BRIP1 has a function in the Fanconi anemia pathway that is independent of BRCA1 and downstream of FANCD2 activation.


Journal of Biological Chemistry | 2008

FANCJ Is a Structure-specific DNA Helicase Associated with the Maintenance of Genomic G/C Tracts

Timothy B. C. London; Louise J. Barber; Georgina Mosedale; Gavin P. Kelly; Shankar Balasubramanian; Ian D. Hickson; Simon J. Boulton; Kevin Hiom

Fanconi anemia (FA) is a heritable human cancer-susceptibility disorder, delineating a genetically heterogenous pathway for the repair of replication-blocking lesions such as interstrand DNA cross-links. Here we demonstrate that one component of this pathway, FANCJ, is a structure-specific DNA helicase that dissociates guanine quadruplex DNA (G4 DNA) in vitro. Moreover, in contrast with previously identified G4 DNA helicases, such as the Blooms helicase (BLM), FANCJ unwinds G4 substrates with 5′–3′ polarity. In the FA-J human patient cell line EUFA0030 the loss of FANCJ G4 unwinding function correlates with the accumulation of large genomic deletions in the vicinity of sequences, which match the G4 DNA signature. Together these findings support a role for FANCJ in the maintenance of potentially unstable genomic G/C tracts during replication.


Molecular Cell | 2003

BRCA1-Independent Ubiquitination of FANCD2.

Cassandra J. Vandenberg; Fanni Gergely; Chong Yi Ong; Paul Pace; Donna L. Mallery; Kevin Hiom; Ketan J. Patel

Monoubiquitination of the FANCD2 protein is a key step in the Fanconi anemia (FA) tumor suppressor pathway, coinciding with this molecules accumulation at sites of genome damage. Strong circumstantial evidence points to a requirement for the BRCA1 gene product in this step. Here, we show that the purified BRCA1/BARD1 complex, together with E1 and UbcH5a, is sufficient to reconstitute the monoubiquitination of FANCD2 in vitro. Although siRNA-mediated knockdown of BRCA1 in human cells results in defective targeting of FANCD2 to sites of DNA damage, it does not lead to a defect in FANCD2 ubiquitination. Furthermore, ablation of the RING finger domains of either BRCA1 or BARD1 in the chicken B cell line DT40 also leaves FANCD2 modification intact. Consequently, while BRCA1 affects the accumulation of FANCD2 at sites of DNA damage, BRCA1/BARD1 E3 ligase activity is not essential for the monoubiquitination of FANCD2.


The EMBO Journal | 2010

Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor

Goedele N. Maertens; Selma El Messaoudi-Aubert; Sarah Elderkin; Kevin Hiom; Gordon Peters

An important facet of transcriptional repression by Polycomb repressive complex 1 (PRC1) is the mono‐ubiquitination of histone H2A by the combined action of the Posterior sex combs (Psc) and Sex combs extra (Sce) proteins. Here, we report that two ubiquitin‐specific proteases, USP7 and USP11, co‐purify with human PRC1‐type complexes through direct interactions with the Psc orthologues MEL18 and BMI1, and with other PRC1 components. Ablation of either USP7 or USP11 in primary human fibroblasts results in de‐repression of the INK4a tumour suppressor accompanied by loss of PRC1 binding at the locus and a senescence‐like proliferative arrest. Mechanistically, USP7 and USP11 regulate the ubiquitination status of the Psc and Sce proteins themselves, thereby affecting their turnover and abundance. Our results point to a novel function for USPs in the regulation and function of Polycomb complexes.


Cell Reports | 2014

BRCA1 is a histone-H2A-specific ubiquitin ligase.

Reinhard Kalb; Donna L. Mallery; Conor Larkin; Jeffrey T.J. Huang; Kevin Hiom

Summary The RING domain proteins BRCA1 and BARD1 comprise a heterodimeric ubiquitin (E3) ligase that is required for the accumulation of ubiquitin conjugates at sites of DNA damage and for silencing at DNA satellite repeat regions. Despite its links to chromatin, the substrate and underlying function of the BRCA1/BARD1 ubiquitin ligase remain unclear. Here, we show that BRCA1/BARD1 specifically ubiquitylates histone H2A in its C-terminal tail on lysines 127 and 129 in vitro and in vivo. The specificity for K127-129 is acquired only when H2A is within a nucleosomal context. Moreover, site-specific targeting of the BRCA1/BARD1 RING domains to chromatin is sufficient for H2Aub foci formation in vivo. Our data establish BRCA1/BARD1 as a histone-H2A-specific E3 ligase, helping to explain its localization and activities on chromatin in cells.


Biochemical Society Transactions | 2009

Understanding the functions of BRCA1 in the DNA-damage response

Maximina H. Yun; Kevin Hiom

Inheritance of a mutation in BRCA1 (breast cancer 1 early-onset) results in predisposition to early-onset breast and ovarian cancer. Tumours in these individuals arise after somatic mutation or loss of the wild-type allele. Loss of BRCA1 function leads to a profound increase in genomic instability involving the accumulation of mutations, DNA breaks and gross chromosomal rearrangements. Accordingly, BRCA1 has been implicated as an important factor involved in both the repair of DNA lesions and in the regulation of cell-cycle checkpoints in response to DNA damage. However, the molecular mechanism through which BRCA1 functions to preserve genome stability remains unclear. In the present article, we examine the different ways in which BRCA1 might influence the repair of DNA damage and the preservation of genome integrity, taking into account what is currently known about its interactions with other proteins, its biochemical activity and its nuclear localization.


DNA Repair | 2010

FANCJ: solving problems in DNA replication.

Kevin Hiom

The FANCJ protein (also known as BACH1 and BRIP1) is a DNA helicase that is required to preserve the genetic and structural integrity of the genome in complex eukaryotes. In humans, mutations in FANCJ are associated with the chromosome instability disorder Fanconis anemia and also with the inherited predisposition early-onset breast cancer. Here I will discuss the contribution of FANCJ to human disease, its role in maintenance of genome stability and some current thoughts on the mechanisms through which this is achieved.

Collaboration


Dive into the Kevin Hiom's collaboration.

Top Co-Authors

Avatar

Donna L. Mallery

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Cassandra J. Vandenberg

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maximina H. Yun

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chong Yi Ong

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge