Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah F. Martin is active.

Publication


Featured researches published by Sarah F. Martin.


Journal of Proteome Research | 2012

Proteome Turnover in the Green Alga Ostreococcus tauri by Time Course 15N Metabolic Labeling Mass Spectrometry

Sarah F. Martin; Vijaya S. Munagapati; Eliane Salvo-Chirnside; Lorraine E. Kerr; Thierry Le Bihan

Protein synthesis and degradation determine the cellular levels of proteins, and their control hence enables organisms to respond to environmental change. Experimentally, these are little known proteome parameters; however, recently, SILAC-based mass spectrometry studies have begun to quantify turnover in the proteomes of cell lines, yeast, and animals. Here, we present a proteome-scale method to quantify turnover and calculate synthesis and degradation rate constants of individual proteins in autotrophic organisms such as algae and plants. The workflow is based on the automated analysis of partial stable isotope incorporation with (15)N. We applied it in a study of the unicellular pico-alga Ostreococcus tauri and observed high relative turnover in chloroplast-encoded ATPases (0.42-0.58% h(-1)), core photosystem II proteins (0.34-0.51% h(-1)), and RbcL (0.47% h(-1)), while nuclear-encoded RbcS2 is more stable (0.23% h(-1)). Mitochondrial targeted ATPases (0.14-0.16% h(-1)), photosystem antennae (0.09-0.14% h(-1)), and histones (0.07-0.1% h(-1)) were comparatively stable. The calculation of degradation and synthesis rate constants k(deg) and k(syn) confirms RbcL as the bulk contributor to overall protein turnover. This study performed over 144 h of incorporation reveals dynamics of protein complex subunits as well as isoforms targeted to different organelles.


Journal of Proteomics | 2011

Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri

Thierry Le Bihan; Sarah F. Martin; Eliane S. Chirnside; Gerben van Ooijen; Martin E. Barrios-Llerena; John S. O'Neill; Pavel V. Shliaha; Lorraine E. Kerr; Andrew J. Millar

Ostreococcus tauri is a unicellular green alga and amongst the smallest and simplest free-living eukaryotes. The O. tauri genome sequence was determined in 2006. Molecular, physiological and taxonomic data that has been generated since then highlight its potential as a simple model species for algae and plants. However, its proteome remains largely unexplored. This paper describes the global proteomic study of O. tauri, using mass spectrometry-based approaches: phosphopeptide enrichment, cellular fractionation, label-free quantification and (15)N metabolic labeling. The O. tauri proteome was analyzed under the following conditions: sampling at different times during the circadian cycle, after 24h of illumination, after 24h of darkness and under various nitrogen source supply levels. Cell cycle related proteins such as dynamin and kinesin were significantly up-regulated during the daylight-to-darkness transition. This is reflected by their higher intensity at ZT13 and this transition phase coincides with the end of mitosis. Proteins involved in several metabolic mechanisms were found to be up-regulated under low nitrogen conditions, including carbon storage pathways, glycolysis, phosphate transport, and the synthesis of inorganic polyphosphates. Ostreococcus tauri responds to low nitrogen conditions by reducing its nitrogen assimilation machinery which suggests an atypical adaptation mechanism for coping with a nutrient-limited environment.


Journal of Cerebral Blood Flow and Metabolism | 2012

Proteomic analysis of mitochondria in APOE transgenic mice and in response to an ischemic challenge

Rachel James; James L. Searcy; Thierry Le Bihan; Sarah F. Martin; Catherine Gliddon; Joanne Povey; Ruth F. Deighton; Lorraine E. Kerr; James McCulloch; Karen Horsburgh

Apolipoprotein E (APOE)-ɛ4 is associated with a deleterious outcome after ischemic brain injury, which may involve abnormal regulation of mitochondrial function. We have assessed the mitochondrial proteomic response of APOE-ɛ3 and APOE-ɛ4 transgenic mice to transient global ischemic injury in the hippocampus. A genotype-dependent increase in ApoE levels in mitochondria was observed after ischemia, with APOE-ɛ4 mice showing significantly greater increases than APOE-ɛ3 mice. Quantitative analysis of the mitochondria-enriched fractions was performed using liquid-chromatography mass spectrometry coupled to label-free analysis. Of the 1,067 identified proteins, 274 were mitochondria associated. Mitochondrial protein expression was significantly different between genotypes under basal conditions as well as in response to global ischemia. A total of 12 mitochondrial proteins (including respiratory chain proteins NDUFA11, NDUFS3, NDUF5B, ATP5J, as well as ETFA, CYB5B, ATP6V1A, HSPA1B, OXR1, GLUL, IARS2, and PHYHIPL) were significantly altered with respect to genotype, global ischemia, or their interaction (P<0.01). A compelling interactome, created using proteins found to be significantly modulated by global ischemia (P<0.05), involved proteins that regulate energy production and oxidative stress. Thus, APOE genotype has a differential effect on the mitochondrial protein expression in the absence and presence of an injury, which may underlie the differing genotype susceptibility.


PLOS ONE | 2013

Functional Analysis of Casein Kinase 1 in a Minimal Circadian System

Gerben van Ooijen; Matthew Hindle; Sarah F. Martin; Martin E. Barrios-Llerena; Frédéric Sanchez; François-Yves Bouget; John S. O’Neill; Thierry Le Bihan; Andrew J. Millar

The Earth’s rotation has driven the evolution of cellular circadian clocks to facilitate anticipation of the solar cycle. Some evidence for timekeeping mechanism conserved from early unicellular life through to modern organisms was recently identified, but the components of this oscillator are currently unknown. Although very few clock components appear to be shared across higher species, Casein Kinase 1 (CK1) is known to affect timekeeping across metazoans and fungi, but has not previously been implicated in the circadian clock in the plant kingdom. We now show that modulation of CK1 function lengthens circadian rhythms in Ostreococcus tauri , a unicellular marine algal species at the base of the green lineage, separated from humans by ~1.5 billion years of evolution. CK1 contributes to timekeeping in a phase-dependent manner, indicating clock-mediated gating of CK1 activity. Label-free proteomic analyses upon overexpression as well as inhibition revealed CK1-responsive phosphorylation events on a set of target proteins, including highly conserved potentially clock-relevant cellular regulator proteins. These results have major implications for our understanding of cellular timekeeping and can inform future studies in any circadian organism.


Rapid Communications in Mass Spectrometry | 2010

Quantitative analysis of low-abundance peptides in HeLa cell cytoplasm by targeted liquid chromatography/mass spectrometry and stable isotope dilution: emphasising the distinction between peptide detection and peptide identification

Thierry Le Bihan; Ramon Grima; Sarah F. Martin; Thorsten Forster; Yann Le Bihan

We present the application of a targeted liquid chromatography/mass spectrometry (LC/MS) approach developed on a linear ion trap for the evaluation of the abundance of cytoplasmic proteins from a HeLa cell extract. Using a standard data-dependent approach, we identified some specific peptides from this extract which were also commercially available in their AQUA form (use for absolute quantitation). For some of the peptides, we observed a non-linear response between the intensity and the added quantity which was then fitted using a quadratic fit. All AQUA peptides spiked into a mix of 3 microg of the HeLa cell digest extract were detected down to 16 fmol. We placed an emphasis on peptide detection which, in this study, is performed using a combination of properties such as three specific Q3-like ion signatures (for a given Q1-like selection) and co-elution with the AQUA peptide counterparts. Detecting a peptide without necessarily identifying it using a search engine imposes less constraint in terms of tandem mass (MS/MS) spectra purity. An example is shown where a peptide is detected using those criteria but could not be identified by Mascot due to its lower abundance. To complement this observation, we used a cross-correlation analysis approach in order to separate two populations of MS/MS fragments based on differences in their elution patterns. Such an approach opens the door to new strategies to analyse lower intensity peptide fragments. An in silico analysis of the human trypsinosome allows the evaluation of how unique are the sets of features that we are using for peptide detection.


Lipids in Health and Disease | 2015

Fibrinogen production is enhanced in an in-vitro model of non-alcoholic fatty liver disease: An isolated risk factor for cardiovascular events?

Emily Yeung; Philipp Treskes; Sarah F. Martin; Jonathan R. Manning; Donald R. Dunbar; Sophie M. Rogers; Thierry Le Bihan; K. Ann Lockman; Steven D. Morley; Peter C. Hayes; Leonard J. Nelson; John Plevris

BackgroundCardiovascular disease (CVD) remains the major cause of excess mortality in patients with non-alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the individual contribution of NAFLD to CVD risk factors in the absence of pathogenic influences from other comorbidities often found in NAFLD patients, by using an established in-vitro model of hepatic steatosis.MethodsHistopathological events in non-alcoholic fatty liver disease were recapitulated by focused metabolic nutrient overload of hepatoblastoma C3A cells, using oleate-treated-cells and untreated controls for comparison. Microarray and proteomic data from cell culture experiments were integrated into a custom-built systems biology database and proteogenomics analysis performed. Candidate genes with significant dysregulation and concomitant changes in protein abundance were identified and STRING association and enrichment analysis performed to identify putative pathogenic pathways.ResultsThe search strategy yielded 3 candidate genes that were specifically and significantly up-regulated in nutrient-overloaded cells compared to untreated controls: fibrinogen alpha chain (2.2 fold), fibrinogen beta chain (2.3 fold) and fibrinogen gamma chain (2.1 fold) (all rank products pfp <0.05). Fibrinogen alpha and gamma chain also demonstrated significant concomitant increases in protein abundance (3.8-fold and 2.0-fold, respectively, p <0.05).ConclusionsIn-vitro modelling of NAFLD and reactive oxygen species formation in nutrient overloaded C3A cells, in the absence of pathogenic influences from other comorbidities, suggests that NAFLD is an isolated determinant of CVD. Nutrient overload-induced up-regulation of all three fibrinogen component subunits of the coagulation cascade provides a possible mechanism to explain the excess CVD mortality observed in NAFLD patients.


BMC Genomics | 2014

The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species

Matthew Hindle; Sarah F. Martin; Zeenat B. Noordally; Gerben van Ooijen; Martin E. Barrios-Llerena; T. Ian Simpson; Thierry Le Bihan; Andrew J. Millar

BackgroundThe current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette.ResultsOur survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways – TOR, MAPK, and the circadian clock – we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs.ConclusionsWe conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.


Environmental Microbiology | 2016

Rock geochemistry induces stress and starvation responses in the bacterial proteome

Casey Bryce; Thierry Le Bihan; Sarah F. Martin; Jesse P. Harrison; Timothy Bush; Bryan M. Spears; Alanna Moore; Natalie Leys; Bo Byloos; Charles S. Cockell

Interactions between microorganisms and rocks play an important role in Earth system processes. However, little is known about the molecular capabilities microorganisms require to live in rocky environments. Using a quantitative label-free proteomics approach, we show that a model bacterium (Cupriavidus metallidurans CH34) can use volcanic rock to satisfy some elemental requirements, resulting in increased rates of cell division in both magnesium- and iron-limited media. However, the rocks also introduced multiple new stresses via chemical changes associated with pH, elemental leaching and surface adsorption of nutrients that were reflected in the proteome. For example, the loss of bioavailable phosphorus was observed and resulted in the upregulation of diverse phosphate limitation proteins, which facilitate increase phosphate uptake and scavenging within the cell. Our results revealed that despite the provision of essential elements, rock chemistry drives complex metabolic reorganization within rock-dwelling organisms, requiring tight regulation of cellular processes at the protein level. This study advances our ability to identify key microbial responses that enable life to persist in rock environments.


BMC Cell Biology | 2013

Functional analysis of the rodent CK1tau mutation in the circadian clock of a marine unicellular alga

Gerben van Ooijen; Sarah F. Martin; Martin E. Barrios-Llerena; Matthew Hindle; Thierry Le Bihan; John S. O'Neill; Andrew J. Millar

BackgroundCasein Kinase 1 (CK1) is one of few proteins known to affect cellular timekeeping across metazoans, and the naturally occurring CK1tau mutation shortens circadian period in mammals. Functional conservation of a timekeeping function for CK1 in the green lineage was recently identified in the green marine unicell Ostreococcus tauri, in spite of the absence of CK1s transcriptional targets known from other species. The short-period phenotype of CK1tau mutant in mammals depends specifically on increased CK1 activity against PERIOD proteins. To understand how CK1 acts differently upon the algal clock, we analysed the cellular and proteomic effects of CK1tau overexpression in O. tauri.ResultsOverexpression of the CK1tau in O. tauri induces period lengthening identical to overexpression of wild-type CK1, in addition to resistance to CK1 inhibitor IC261. Label-free quantitative mass spectrometry of CK1tau overexpressing algae revealed a total of 58 unique phospho-sites that are differentially responsive to CK1tau. Combined with CK1 phosphorylation site prediction tools and previously published wild-type CK1-responsive peptides, this study results in a highly stringent list of upregulated phospho-sites, derived from proteins containing ankyrin repeats, kinase proteins, and phosphoinositide-binding proteins.ConclusionsThe identical phenotype for overexpression of wild-type CK1 and CK1tau is in line with the absence of critical targets for rodent CK1tau in O. tauri. Proteomic analyses reveal that two thirds of previously reported CK1 overexpression-responsive phospho-sites are shared with CK1tau. These results indicate that the two alleles are functionally indiscriminate in O. tauri, and verify the identified cellular CK1 target proteins in a minimal circadian model organism.


Proteomics | 2015

Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri

Thierry Le Bihan; Matthew Hindle; Sarah F. Martin; Martin E. Barrios-Llerena; Johanna Krahmer; Katalin Kis; Andrew J. Millar; Gerben van Ooijen

Casein kinase 2 (CK2) is a protein kinase that phosphorylates a plethora of cellular target proteins involved in processes including DNA repair, cell cycle control, and circadian timekeeping. CK2 is functionally conserved across eukaryotes, although the substrate proteins identified in a range of complex tissues are often different. The marine alga Ostreococcus tauri is a unicellular eukaryotic model organism ideally suited to efficiently study generic roles of CK2 in the cellular circadian clock. Overexpression of CK2 leads to a slow circadian rhythm, verifying functional conservation of CK2 in timekeeping. The proteome was analysed in wild‐type and CK2‐overexpressing algae at dawn and dusk, revealing that differential abundance of the global proteome across the day is largely unaffected by overexpression. However, CK2 activity contributed more strongly to timekeeping at dusk than at dawn. The phosphoproteome of a CK2 overexpression line and cells treated with CK2 inhibitor was therefore analysed and compared to control cells at dusk. We report an extensive catalogue of 447 unique CK2‐responsive differential phosphopeptide motifs to inform future studies into CK2 activity in the circadian clock of more complex tissues. All MS data have been deposited in the ProteomeXchange with identifier PXD000975 (http://proteomecentral.proteomexchange.org/dataset/PXD000975).

Collaboration


Dive into the Sarah F. Martin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Plevris

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge