Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah H. Atkinson is active.

Publication


Featured researches published by Sarah H. Atkinson.


Blood | 2012

Hepcidin is the major predictor of erythrocyte iron incorporation in anemic African children

Andrew M. Prentice; Conor P. Doherty; Steven A. Abrams; Sharon E. Cox; Sarah H. Atkinson; Hans Verhoef; Andrew E. Armitage; Hal Drakesmith

Iron supplementation strategies in the developing world remain controversial because of fears of exacerbating prevalent infectious diseases. Understanding the conditions in which iron will be absorbed and incorporated into erythrocytes is therefore important. We studied Gambian children with either postmalarial or nonmalarial anemia, who were given oral iron supplements daily for 30 days. Supplements administered on days 1 and 15 contained the stable iron isotopes 57Fe and 58Fe, respectively, and erythrocyte incorporation was measured in blood samples drawn 14 days later. We investigated how the iron-regulatory hormone hepcidin and other inflammatory/iron-related indices, all measured on the day of isotope administration, correlated with erythrocyte iron incorporation. In univariate analyses, hepcidin, ferritin, C-reactive protein, and soluble transferrin receptor (sTfR) strongly predicted incorporation of 57Fe given on day 1, while hepcidin, ferritin, and sTfR/log ferritin correlated with 58Fe incorporation. In a final multivariate model, the most consistent predictor of erythrocyte isotope incorporation was hepcidin. We conclude that under conditions of competing signals (anemia, iron deficiency, and infection), hepcidin powerfully controls use of dietary iron. We suggest that low-cost point-of-care hepcidin assays would aid iron supplementation programs in the developing world.


PLOS ONE | 2012

Diarrhoea Complicating Severe Acute Malnutrition in Kenyan Children: A Prospective Descriptive Study of Risk Factors and Outcome

Alison Talbert; Nahashon Thuo; Japhet Karisa; Charles Chesaro; E O Ohuma; James Ignas; James A. Berkley; Christopher Toromo; Sarah H. Atkinson; Kathryn Maitland

Background Severe acute malnutrition (SAM) accounts for two million deaths worldwide annually. In those hospitalised with SAM, concomitant infections and diarrhoea are frequent complications resulting in adverse outcome. We examined the clinical and laboratory features on admission and outcome of children with SAM and diarrhoea at a Kenyan district hospital. Methods A 4-year prospective descriptive study involving 1,206 children aged 6 months to 12 years, hospitalized with SAM and managed in accordance with WHO guidelines. Data on clinical features, haematological, biochemical and microbiological findings for children with diarrhoea (≥3 watery stools/day) were systematically collected and analyzed to identify risk factors associated with poor outcome. Results At admission 592 children (49%) had diarrhoea of which 122 (21%) died compared to 72/614 (12%) deaths in those without diarrhoea at admission (Χ2 = 17.6 p<0.001). A further 187 (16%) children developed diarrhoea after 48 hours of admission and 33 died (18%). Any diarrhoea during admission resulted in a significantly higher mortality 161/852 (19%) than those uncomplicated by diarrhoea 33/351 (9%) (Χ2 = 16.6 p<0.001). Features associated with a fatal outcome in children presenting with diarrhoea included bacteraemia, hyponatraemia, low mid-upper arm circumference <10 cm, hypoxia, hypokalaemia and oedema. Bacteraemia had the highest risk of death (adjusted OR 6.1; 95% C.I 2.3, 16.3 p<0.001); and complicated 24 (20%) of fatalities. Positive HIV antibody status was more frequent in cases with diarrhoea at admission (23%) than those without (15%, Χ2 = 12.0 p = 0.001) but did not increase the risk of death in diarrhoea cases. Conclusion Children with SAM complicated by diarrhoea had a higher risk of death than those who did not have diarrhoea during their hospital stay. Further operational and clinical research is needed to reduce mortality in children with SAM in the given setting.


PLOS Medicine | 2006

Seasonal childhood anaemia in West Africa is associated with the haptoglobin 2-2 genotype

Sarah H. Atkinson; Kirk A. Rockett; Giorgio Sirugo; Philip Bejon; Anthony J. Fulford; Maria A. O'Connell; Robin L. Bailey; Dominic P. Kwiatkowski; Andrew M. Prentice

Background Anaemia is a major cause of morbidity and mortality for children in Africa. The plasma protein haptoglobin (Hp) binds avidly to free haemoglobin released following malaria-induced haemolysis. Haptoglobin polymorphisms result in proteins with altered haemoglobin-binding capacity and different antioxidant, iron-recycling, and immune functions. Previous studies examined the importance of haptoglobin polymorphism in malaria and iron homeostasis, but it is unknown whether haptoglobin genotype might be a risk factor for anaemia in children in a malaria-endemic area. Methods and Findings A cohort of 780 rural Gambian children aged 2–6 y was surveyed at the start and end of the malaria season. Samples were taken to assess haemoglobin (Hb) concentration, iron status (ferritin, zinc protoporphyrin, transferrin saturation, and soluble transferrin receptor concentration), haptoglobin concentration, α-1-antichymotrypsin (a measure of inflammation), and malaria parasites on blood film. We extracted DNA and genotyped for haptoglobin, sickle cell, and glucose-6-phosphate (G6PD) deficiency. Mean Hb levels fell over the malaria season. Children with the haptoglobin 2-2 genotype (17%) had a greater mean drop in Hb level over the malaria season (an 8.9 g/l drop; confidence interval [CI] 5.7, 12.1) compared to other children (a 5.1 g/l drop; CI 3.8, 6.4). In multivariate regression analysis, controlling for baseline Hb level, age group, village, malaria parasites on blood film, iron status, haptoglobin concentration, and G6PD deficiency, haptoglobin genotype predicted Hb level at the end of the malaria season ( p = 0.0009, coefficient = −4.2). Iron status was not influenced by haptoglobin genotype. Conclusions The finding that haptoglobin 2-2 genotype is a risk factor for anaemia in children in a malaria-endemic area may reflect the reduced ability of the Hp2-2 polymer to scavenge free haemoglobin-iron following malaria-induced haemolysis. The magnitude of the effect of haptoglobin genotype (4 g/l Hb difference, p = 0.0009) was comparable to that of G6PD deficiency or HbAS (3 g/l difference, p = 0.03; and 2 g/l difference, p = 0.68, respectively).


Science Translational Medicine | 2014

Expression of the Iron Hormone Hepcidin Distinguishes Different Types of Anemia in African Children

Sant-Rayn Pasricha; Sarah H. Atkinson; Andrew E. Armitage; Shivani Khandwala; Jacobien Veenemans; Sharon E. Cox; Lucy A. Eddowes; Theodore Hayes; Conor P. Doherty; Ayşe Y. Demir; Edwin Tijhaar; Hans Verhoef; Andrew M. Prentice; Hal Drakesmith

The iron hormone hepcidin correctly identifies African children in whom iron supplementation is most likely to be beneficial. Hepcidin Guides Iron Supplementation in African Children Anemia affects 300 million preschool children worldwide and has multiple causes including iron deficiency or infection. Dietary iron supplementation is used to combat anemia, but substantial concerns exist that iron can be harmful, in part by promoting infection. Iron is likely to preferentially benefit children with iron deficiency anemia, but identification of such children is challenging. Hepcidin is the hormone that regulates body iron levels and inhibits absorption of iron from the diet. Hepcidin concentrations are generally low in iron deficiency but are raised in iron-replete individuals and are also increased by infection. In a new study, Pasricha et al. set out to investigate whether hepcidin measurements would enable targeting of interventions to children who need iron but who are also able to absorb it. They tested this by measuring hepcidin in three cohorts of preschool African children from The Gambia and Tanzania. Single cutoffs of hepcidin concentrations efficiently identified children with iron deficiency, distinguished between iron deficiency anemia and anemia due to infection and inflammation, and predicted which children would incorporate >20% of an oral iron dose into their red blood cells. Thus, hepcidin is a critical determinant of iron homeostasis and may be a useful marker to guide diagnosis of anemia and enable screen-and-treat iron supplementation programs. Childhood anemia is a major global health problem resulting from multiple causes. Iron supplementation addresses iron deficiency anemia but is undesirable for other types of anemia and may exacerbate infections. The peptide hormone hepcidin governs iron absorption; hepcidin transcription is mediated by iron, inflammation, and erythropoietic signals. However, the behavior of hepcidin in populations where anemia is prevalent is not well established. We show that hepcidin measurements in 1313 African children from The Gambia and Tanzania (samples taken in 2001 and 2008, respectively) could be used to identify iron deficiency anemia. A retrospective secondary analysis of published data from 25 Gambian children with either postmalarial or nonmalarial anemia demonstrated that hepcidin measurements identified individuals who incorporated >20% oral iron into their erythrocytes. Modeling showed that this sensitivity of hepcidin expression at the population level could potentially enable simple groupings of individuals with anemia into iron-responsive and non–iron-responsive subtypes and hence could guide iron supplementation for those who would most benefit.


The American Journal of Clinical Nutrition | 2008

Fraction of all hospital admissions and deaths attributable to malnutrition among children in rural Kenya

Philip Bejon; Shebe Mohammed; Isaiah Mwangi; Sarah H. Atkinson; Faith Osier; Norbert Peshu; Charles R. Newton; Kathryn Maitland; James A. Berkley

Background: Malnutrition is common in the developing world and associated with disease and mortality. Because malnutrition frequently occurs among children in the community as well as those with acute illness, and because anthropometric indicators of nutritional status are continuous variables that preclude a single definition of malnutrition, malnutrition-attributable fractions of admissions and deaths cannot be calculated by simply enumerating individual children. Objective: We determined the malnutrition-attributable fractions among children admitted to a rural district hospital in Kenya, among inpatient deaths and among children with the major causes of severe disease. Design: We analyzed data from children between 6 and 60 mo of age, comprising 13 307 admissions, 674 deaths, 3068 admissions with severe disease, and 562 community controls by logistic regression, using anthropometric z scores as the independent variable and admission or death as the outcome, to calculate the probability of admission as a result of “true malnutrition” for individual cases. Probabilities were averaged to calculate attributable fractions. Results: Z scores < −3 were insensitive for malnutrition-attributable deaths and admissions, and no single threshold was both specific and sensitive. The overall malnutrition-attributable fraction for in-hospital deaths was 51% (95% CI: 42%, 61%) with midupper arm circumference. Similar malnutrition-attributable fractions were seen for the major causes of severe disease (severe malaria, gastroenteritis, lower respiratory tract infection, HIV, and invasive bacterial disease). Conclusions: Despite global improvements, malnutrition still underlies half of the inpatient morbidity and mortality rates among children in rural Kenya. This contribution is underestimated by using conventional clinical definitions of severe malnutrition.


PLOS ONE | 2007

Haplotype Association between Haptoglobin (Hp2) and Hp Promoter SNP (A-61C) May Explain Previous Controversy of Haptoglobin and Malaria Protection

Sharon E. Cox; Conor P. Doherty; Sarah H. Atkinson; Chidi Victor Nweneka; Anthony J. Fulford; Hala Ghattas; Kirk A. Rockett; Dominic P. Kwiatkowski; Andrew M. Prentice

Background Malaria is one of the strongest recent selective pressures on the human genome, as evidenced by the high levels of varying haemoglobinopathies in human populations–despite the increased risk of mortality in the homozygous states. Previously, functional polymorphisms of Hp, coded by the co-dominant alleles Hp1 and Hp2, have been variously associated with several infectious diseases, including malaria susceptibility. Methodology/Principal Findings Risk of a clinical malarial episode over the course of a malarial transmission season was assessed using active surveillance in a cohort of Gambian children aged 10–72 months. We report for the first time that the major haplotype for the A-61C mutant allele in the promoter of haptoglobin (Hp)–an acute phase protein that clears haemoglobin released from haemolysis of red cells–is associated with protection from malarial infection in older children, (children aged ≥36 months, >500 parasites/ul and temperature >37.5°C; OR = 0.42; [95% CI 0.24–0.73] p = 0.002) (lr test for interaction, <36 vs ≥36 months, p = 0.014). Protection was also observed using two other definitions, including temperature >37.5°C, dipstick positive, plus clinical judgement of malaria blinded to dipstick result (all ages, OR = 0.48, [95% CI 0.30–0.78] p = 0.003; ≥36 months, OR = 0.31, [95% CI 0.15–0.62] p = 0.001). A similar level of protection was observed for the known protective genetic variant, sickle cell trait (HbAS). Conclusions/Significance We propose that previous conflicting results between Hp phenotypes/genotypes and malaria susceptibility may be explained by differing prevalence of the A-61C SNP in the populations studied, which we found to be highly associated with the Hp2 allele. We report the -61C allele to be associated with decreased Hp protein levels (independent of Hp phenotype), confirming in vitro studies. Decreased Hp expression may lead to increased oxidant stress and increased red cell turnover, and facilitate the development of acquired immunity, similar to a mechanism suggested for sickle cell trait.


Clinical Infectious Diseases | 2007

The Haptoglobin 2-2 Genotype Is Associated with a Reduced Incidence of Plasmodium falciparum Malaria in Children on the Coast of Kenya

Sarah H. Atkinson; Tabitha W. Mwangi; Sophie Uyoga; Edna Ogada; Alex Macharia; Kevin Marsh; Andrew M. Prentice; Thomas N. Williams

BACKGROUND Haptoglobin (Hp) genotype determines the efficiency of hemoglobin clearance after malaria-induced hemolysis and alters antioxidant and immune functions. The Hp2 allele is thought to have spread under strong selection pressure, but it is unclear whether this is due to protection from malaria or other diseases. METHODS We monitored the incidence of febrile malaria and other childhood illnesses with regard to Hp genotype in a prospective cohort of 312 Kenyan children during 558.3 child-years of follow-up. We also conducted 7 cross-sectional surveys to determine the prevalence of Plasmodium falciparum parasitemia. RESULTS The Hp2/2 genotype was associated with a 30% reduction in clinical malarial episodes (adjusted incidence rate ratio, 0.67; P=.008 for Hp2/2 vs. Hp1/1 and Hp2/1 combined). Protection increased with age; there was no protection in the first 2 years of life, 30% protection at > or = 2 years of age, and 50% protection from 4-10 years of age. Children with the Hp1/1 genotype had a significantly lower rate of nonmalarial fever (P=.001). CONCLUSIONS Balancing selection pressures may have influenced the spread of the Hp gene. Our observations suggest that the Hp2 allele may have spread as a result of protection from malaria, and the Hp1 allele may be sustained by protection from other infections.


Blood | 2014

Combinatorial effects of malaria season, iron deficiency, and inflammation determine plasma hepcidin concentration in African children.

Sarah H. Atkinson; Andrew E. Armitage; Shivani Khandwala; Tabitha W. Mwangi; Sophie Uyoga; Philip Bejon; Thomas N. Williams; Andrew M. Prentice; Hal Drakesmith

Hepcidin is the master regulatory hormone that governs iron homeostasis and has a role in innate immunity. Although hepcidin has been studied extensively in model systems, there is less information on hepcidin regulation in global health contexts where iron deficiency (ID), anemia, and high infectious burdens (including malaria) all coexist but fluctuate over time. We evaluated iron status, hepcidin levels, and determinants of hepcidin in 2 populations of rural children aged ≤8 years, in the Gambia and Kenya (total n = 848), at the start and end of a malaria season. Regression analyses and structural equation modeling demonstrated, for both populations, similar combinatorial effects of upregulating stimuli (iron stores and to a lesser extent inflammation) and downregulating stimuli (erythropoietic drive) on hepcidin levels. However, malaria season was also a significant factor and was associated with an altered balance of these opposing factors. Consistent with these changes, hepcidin levels were reduced whereas the prevalence of ID was increased at the end of the malaria season. More prevalent ID and lower hepcidin likely reflect an enhanced requirement for iron and an ability to efficiently absorb it at the end of the malaria season. These results, therefore, have implications for ID and malaria control programs.


BMC Medical Education | 2012

Peer observation of teaching as a faculty development tool

Peter B. Sullivan; Alexandra Buckle; Gregg Nicky; Sarah H. Atkinson

BackgroundPeer observation of Teaching involves observers providing descriptive feedback to their peers on learning and teaching practice as a means to improve quality of teaching. This study employed and assessed peer observation as a constructive, developmental process for members of a Pediatric Teaching Faculty.MethodsThis study describes how peer observation was implemented as part of a teaching faculty development program and how it was perceived by teachers. The PoT process was divided into 4 stages: pre-observation meeting, observation, post-observation feedback and reflection. Particular care was taken to ensure that teachers understood that the observation and feedback was a developmental and not an evaluative process. Twenty teachers had their teaching peer observed by trained Faculty members and gave an e-mail ‘sound-bite’ of their perceptions of the process. Teaching activities included lectures, problem-based learning, small group teaching, case-based teaching and ward-based teaching sessions.ResultsTeachers were given detailed verbal and written feedback based on the observer’s and students’ observations. Teachers’ perceptions were that PoT was useful and relevant to their teaching practice. Teachers valued receiving feedback and viewed PoT as an opportunity for insight and reflection. The process of PoT was viewed as non-threatening and teachers thought that PoT enhanced the quality of their teaching, promoted professional development and was critical for Faculty development.ConclusionsThis study demonstrated that PoT can be used in a constructive way to improve course content and delivery, to support and encourage medical teachers, and to reinforce good teaching.


Blood | 2008

Tumor necrosis factor SNP haplotypes are associated with iron deficiency anemia in West African children

Sarah H. Atkinson; Kirk A. Rockett; Gareth J. Morgan; Philip Bejon; Giorgio Sirugo; Maria A. O'Connell; Neil A. Hanchard; Dominic P. Kwiatkowski; Andrew M. Prentice

Plasma levels of tumor necrosis factor-alpha (TNF-alpha) are significantly raised in malaria infection and TNF-alpha is thought to inhibit intestinal iron absorption and macrophage iron release. This study investigated putative functional single nucleotide polymorphisms (SNPs) and haplotypes across the major histocompatibility complex (MHC) class III region, including TNF and its immediate neighbors nuclear factor of kappa light polypeptide gene enhancer in B cells (lkappaBL), inhibitor-like 1 and lymphotoxin alpha (LTA), in relation to nutritional iron status and anemia, in a cohort of 780 children across a malaria season. The prevalence of iron deficiency anemia (IDA) increased over the malaria season (P < .001). The TNF(-308) AA genotype was associated with an increased risk of iron deficiency (adjusted OR 8.1; P = .001) and IDA (adjusted OR 5.1; P = .01) at the end of the malaria season. No genotypes were associated with IDA before the malaria season. Thus, TNF appears to be a risk factor for iron deficiency and IDA in children in a malaria-endemic environment and this is likely to be due to a TNF-alpha-induced block in iron absorption.

Collaboration


Dive into the Sarah H. Atkinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominic P. Kwiatkowski

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Conor P. Doherty

Royal Hospital for Sick Children

View shared research outputs
Top Co-Authors

Avatar

Kirk A. Rockett

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge