Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah J. Hainer is active.

Publication


Featured researches published by Sarah J. Hainer.


Genes & Development | 2011

Intergenic transcription causes repression by directing nucleosome assembly

Sarah J. Hainer; Justin A. Pruneski; Rachel D. Mitchell; Robin M. Monteverde; Joseph A. Martens

Transcription of non-protein-coding DNA (ncDNA) and its noncoding RNA (ncRNA) products are beginning to emerge as key regulators of gene expression. We previously identified a regulatory system in Saccharomyces cerevisiae whereby transcription of intergenic ncDNA (SRG1) represses transcription of an adjacent protein-coding gene (SER3) through transcription interference. We now provide evidence that SRG1 transcription causes repression of SER3 by directing a high level of nucleosomes over SRG1, which overlaps the SER3 promoter. Repression by SRG1 transcription is dependent on the Spt6 and Spt16 transcription elongation factors. Significantly, spt6 and spt16 mutations reduce nucleosome levels over the SER3 promoter without reducing intergenic SRG1 transcription, strongly suggesting that nucleosome levels, not transcription levels, cause SER3 repression. Finally, we show that spt6 and spt16 mutations allow transcription factor access to the SER3 promoter. Our results raise the possibility that transcription of ncDNA may contribute to nucleosome positioning on a genome-wide scale where, in some cases, it negatively impacts protein-DNA interactions.


Developmental Cell | 2014

High-Resolution Mapping of Chromatin Packaging in Mouse Embryonic Stem Cells and Sperm

Benjamin R. Carone; Jui-Hung Hung; Sarah J. Hainer; Min-Te Chou; Dawn M. Carone; Zhiping Weng; Thomas G. Fazzio; Oliver J. Rando

Mammalian embryonic stem cells (ESCs) and sperm exhibit unusual chromatin packaging that plays important roles in cellular function. Here, we extend a recently developed technique, based on deep paired-end sequencing of lightly digested chromatin, to assess footprints of nucleosomes and other DNA-binding proteins genome-wide in murine ESCs and sperm. In ESCs, we recover well-characterized features of chromatin such as promoter nucleosome depletion and further identify widespread footprints of sequence-specific DNA-binding proteins such as CTCF, which we validate in knockdown studies. We document global differences in nuclease accessibility between ESCs and sperm, finding that the majority of histone retention in sperm preferentially occurs in large gene-poor genomic regions, with only a small subset of nucleosomes being retained over promoters of developmental regulators. Finally, we describe evidence that CTCF remains associated with the genome in mature sperm, where it could play a role in organizing the sperm genome.


Eukaryotic Cell | 2011

The Paf1 Complex Represses SER3 Transcription in Saccharomyces cerevisiae by Facilitating Intergenic Transcription-Dependent Nucleosome Occupancy of the SER3 Promoter

Justin A. Pruneski; Sarah J. Hainer; Kostadin Petrov; Joseph A. Martens

ABSTRACT Previous studies have shown that repression of the Saccharomyces cerevisiae SER3 gene is dependent on transcription of SRG1 from noncoding DNA initiating within the intergenic region 5′ of SER3 and extending across the SER3 promoter region. By a mechanism dependent on the activities of the Swi/Snf chromatin remodeling factor, the HMG-like factor Spt2, and the Spt6 and Spt16 histone chaperones, SRG1 transcription deposits nucleosomes over the SER3 promoter to prevent transcription factors from binding and activating SER3. In this study, we uncover a role for the Paf1 transcription elongation complex in SER3 repression. We find that SER3 repression is primarily dependent on the Paf1 and Ctr9 subunits of this complex, with minor contributions by the Rtf1, Cdc73, and Leo1 subunits. We show that the Paf1 complex localizes to the SRG1 transcribed region under conditions that repress SER3, consistent with it having a direct role in mediating SRG1 transcription-dependent SER3 repression. Importantly, we show that the defect in SER3 repression in strains lacking Paf1 subunits is not a result of reduced SRG1 transcription or reduced levels of known Paf1 complex-dependent histone modifications. Rather, we find that strains lacking subunits of the Paf1 complex exhibit reduced nucleosome occupancy and reduced recruitment of Spt16 and, to a lesser extent, Spt6 at the SER3 promoter. Taken together, our results suggest that Paf1 and Ctr9 repress SER3 by maintaining SRG1 transcription-dependent nucleosome occupancy.


Genes & Development | 2015

Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF

Sarah J. Hainer; Weifeng Gu; Benjamin R. Carone; Benjamin D. Landry; Oliver J. Rando; Craig C. Mello; Thomas G. Fazzio

Approximately 75% of the human genome is transcribed, the majority of which does not encode protein. However, many noncoding RNAs (ncRNAs) are rapidly degraded after transcription, and relatively few have established functions, questioning the significance of this observation. Here we show that esBAF, a SWI/SNF family nucleosome remodeling factor, suppresses transcription of ncRNAs from ∼57,000 nucleosome-depleted regions (NDRs) throughout the genome of mouse embryonic stem cells (ESCs). We show that esBAF functions to both keep NDRs nucleosome-free and promote elevated nucleosome occupancy adjacent to NDRs. Reduction of adjacent nucleosome occupancy upon esBAF depletion is strongly correlated with ncRNA expression, suggesting that flanking nucleosomes form a barrier to pervasive transcription. Upon forcing nucleosome occupancy near two NDRs using a nucleosome-positioning sequence, we found that esBAF is no longer required to silence transcription. Therefore, esBAFs function to enforce nucleosome occupancy adjacent to NDRs, and not its function to maintain NDRs in a nucleosome-free state, is necessary for silencing transcription over ncDNA. Finally, we show that the ability of a strongly positioned nucleosome to repress ncRNA depends on its translational positioning. These data reveal a novel role for esBAF in suppressing pervasive transcription from open chromatin regions in ESCs.


Molecular and Cellular Biology | 2011

Identification of Histone Mutants That Are Defective for Transcription-Coupled Nucleosome Occupancy

Sarah J. Hainer; Joseph A. Martens

ABSTRACT Our previous studies of Saccharomyces cerevisiae described a gene repression mechanism where the transcription of intergenic noncoding DNA (ncDNA) (SRG1) assembles nucleosomes across the promoter of the adjacent SER3 gene that interfere with the binding of transcription factors. To investigate the role of histones in this mechanism, we screened a comprehensive library of histone H3 and H4 mutants for those that derepress SER3. We identified mutations altering eight histone residues (H3 residues V46, R49, V117, Q120, and K122 and H4 residues R36, I46, and S47) that strongly increase SER3 expression without reducing the transcription of the intergenic SRG1 ncDNA. We detected reduced nucleosome occupancy across SRG1 in these mutants to degrees that correlate well with the level of SER3 derepression. The histone chromatin immunoprecipitation experiments on several other genes suggest that the loss of nucleosomes in these mutants is specific to highly transcribed regions. Interestingly, two of these histone mutants, H3 R49A and H3 V46A, reduce Set2-dependent methylation of lysine 36 of histone H3 and allow transcription initiation from cryptic intragenic promoters. Taken together, our data identify a new class of histone mutants that is defective for transcription-dependent nucleosome occupancy.


G3: Genes, Genomes, Genetics | 2012

Identification of Mutant Versions of the Spt16 Histone Chaperone That Are Defective for Transcription-Coupled Nucleosome Occupancy in Saccharomyces cerevisiae

Sarah J. Hainer; Brittany A. Charsar; Shayna B. Cohen; Joseph A. Martens

The highly conserved FACT (Facilitates Chromatin Transactions) complex performs essential functions in eukaryotic cells through the reorganization of nucleosomes. During transcription, FACT reorganizes nucleosomes to allow passage of RNA Polymerase II and then assists in restoring these nucleosomes after RNA Polymerase II has passed. We have previously shown, consistent with this function, that Spt16 facilitates repression of the Saccharomyces cerevisiae SER3 gene by maintaining nucleosome occupancy over the promoter of this gene as a consequence of intergenic transcription of SRG1 noncoding DNA. In this study, we report the results of a genetic screen to identify mutations in SPT16 that derepress SER3. Twenty-five spt16 mutant alleles were found to derepress SER3 without causing significant reductions in either SRG1 RNA levels or Spt16 protein levels. Additional phenotypic assays indicate that these mutants have general transcription defects related to altered chromatin structure. Our analyses of a subset of these spt16 mutants reveal defects in SRG1 transcription-coupled nucleosome occupancy over the SER3 promoter. We provide evidence that these mutants broadly impair transcription-coupled nucleosome occupancy at highly transcribed genes but not at lowly transcribed genes. Finally, we show that one consequence shared by these mutations is the reduced binding of mutant Spt16 proteins across SRG1 and other highly transcribed genes. Taken together, our results highlight an important role for Spt16 in orchestrating transcription-coupled nucleosome assembly at highly transcribed regions of the genome, possibly by facilitating the association of Spt16 during this process.


Cell Reports | 2015

Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome.

Sarah J. Hainer; Thomas G. Fazzio

Functional interactions between gene regulatory factors and chromatin architecture have been difficult to directly assess. Here, we use micrococcal nuclease (MNase) footprinting to probe the functions of two chromatin-remodeling complexes. By simultaneously quantifying alterations in small MNase footprints over the binding sites of 30 regulatory factors in mouse embryonic stem cells (ESCs), we provide evidence that esBAF and Mbd3/NuRD modulate the binding of several regulatory proteins. In addition, we find that nucleosome occupancy is reduced at specific loci in favor of subnucleosomes upon depletion of esBAF, including sites of histone H2A.Z localization. Consistent with these data, we demonstrate that esBAF is required for normal H2A.Z localization in ESCs, suggesting esBAF either stabilizes H2A.Z-containing nucleosomes or promotes subnucleosome to nucleosome conversion by facilitating H2A.Z deposition. Therefore, integrative examination of MNase footprints reveals insights into nucleosome dynamics and functional interactions between chromatin structure and key gene-regulatory factors.


eLife | 2016

DNA methylation directs genomic localization of Mbd2 and Mbd3 in embryonic stem cells

Sarah J. Hainer; Kurtis N. McCannell; Jun Yu; Ly-Sha Ee; Lihua Julie Zhu; Oliver J. Rando; Thomas G. Fazzio

Cytosine methylation is an epigenetic and regulatory mark that functions in part through recruitment of chromatin remodeling complexes containing methyl-CpG binding domain (MBD) proteins. Two MBD proteins, Mbd2 and Mbd3, were previously shown to bind methylated or hydroxymethylated DNA, respectively; however, both of these findings have been disputed. Here, we investigated this controversy using experimental approaches and re-analysis of published data and find no evidence for methylation-independent functions of Mbd2 or Mbd3. We show that chromatin localization of Mbd2 and Mbd3 is highly overlapping and, unexpectedly, we find Mbd2 and Mbd3 are interdependent for chromatin association. Further investigation reveals that both proteins are required for normal levels of cytosine methylation and hydroxymethylation in murine embryonic stem cells. Furthermore, Mbd2 and Mbd3 regulate overlapping sets of genes that are also regulated by DNA methylation/hydroxymethylation factors. These findings reveal an interdependent regulatory mechanism mediated by the DNA methylation machinery and its readers. DOI: http://dx.doi.org/10.7554/eLife.21964.001


BMC Genomics | 2014

Unbiased chromatin accessibility profiling by RED-seq uncovers unique features of nucleosome variants in vivo

Poshen B. Chen; Lihua Julie Zhu; Sarah J. Hainer; Kurtis N. McCannell; Thomas G. Fazzio

BackgroundDifferential accessibility of DNA to nuclear proteins underlies the regulation of numerous cellular processes. Although DNA accessibility is primarily determined by the presence or absence of nucleosomes, differences in nucleosome composition or dynamics may also regulate accessibility. Methods for mapping nucleosome positions and occupancies genome-wide (MNase-seq) have uncovered the nucleosome landscapes of many different cell types and organisms. Conversely, methods specialized for the detection of large nucleosome-free regions of chromatin (DNase-seq, FAIRE-seq) have uncovered numerous gene regulatory elements. However, these methods are less successful in measuring the accessibility of DNA sequences within nucelosome arrays.ResultsHere we probe the genome-wide accessibility of multiple cell types in an unbiased manner using restriction endonuclease digestion of chromatin coupled to deep sequencing (RED-seq). Using this method, we identified differences in chromatin accessibility between populations of cells, not only in nucleosome-depleted regions of the genome (e.g., enhancers and promoters), but also within the majority of the genome that is packaged into nucleosome arrays. Furthermore, we identified both large differences in chromatin accessibility in distinct cell lineages and subtle but significant changes during differentiation of mouse embryonic stem cells (ESCs). Most significantly, using RED-seq, we identified differences in accessibility among nucleosomes harboring well-studied histone variants, and show that these differences depend on factors required for their deposition.ConclusionsUsing an unbiased method to probe chromatin accessibility genome-wide, we uncover unique features of chromatin structure that are not observed using more widely-utilized methods. We demonstrate that different types of nucleosomes within mammalian cells exhibit different degrees of accessibility. These findings provide significant insight into the regulation of DNA accessibility.


Transcription | 2011

Transcription of ncDNA: Many roads lead to local gene regulation

Sarah J. Hainer; Joseph A. Martens

Transcription of ncDNA occurs throughout eukaryotic genomes, generating a wide array of ncRNAs. One large class of ncRNAs include those transcribed over the promoter regions of nearby protein coding genes. Recent studies primarily focusing on individual genes have uncovered multiple mechanisms by which promoter-associated transcriptional activity locally alters gene expression.

Collaboration


Dive into the Sarah J. Hainer's collaboration.

Top Co-Authors

Avatar

Thomas G. Fazzio

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver J. Rando

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Benjamin R. Carone

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurtis N. McCannell

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Lihua Julie Zhu

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Ana Bošković

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Benjamin D. Landry

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge