Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah J. Hemley is active.

Publication


Featured researches published by Sarah J. Hemley.


Nature Genetics | 2007

Modifiers of epigenetic reprogramming show paternal effects in the mouse

Suyinn Chong; Nicola Vickaryous; Alyson Ashe; Natasha Zamudio; Neil A. Youngson; Sarah J. Hemley; Tomas Stopka; Arthur I. Skoultchi; Jacqui Matthews; Hamish S. Scott; David M. de Kretser; Moira K. O'Bryan; Marnie E. Blewitt; Emma Whitelaw

There is increasing evidence that epigenetic information can be inherited across generations in mammals, despite extensive reprogramming both in the gametes and in the early developing embryo. One corollary to this is that disrupting the establishment of epigenetic state in the gametes of a parent, as a result of heterozygosity for mutations in genes involved in reprogramming, could affect the phenotype of offspring that do not inherit the mutant allele. Here we show that such effects do occur following paternal inheritance in the mouse. We detected changes to transcription and chromosome ploidy in adult animals. Paternal effects of this type have not been reported previously in mammals and suggest that the untransmitted genotype of male parents can influence the phenotype of their offspring.


Journal of Biomechanics | 2012

The presence of arachnoiditis affects the characteristics of CSF flow in the spinal subarachnoid space: A modelling study

Shaokoon Cheng; Marcus A. Stoodley; Johnny Wong; Sarah J. Hemley; David F. Fletcher; Lynne E. Bilston

Syringomyelia is a neurological disorder characterised by high pressure fluid-filled cysts within the spinal cord. As syringomyelia is associated with abnormalities of the central nervous system that obstruct cerebrospinal fluid (CSF) flow, it is thought that changes in CSF dynamics play an important role in its pathogenesis. Using three-dimensional computational models of the spinal subarachnoid space (SAS), this study aims to determine SAS obstructions, such as arachnoiditis, change in CSF dynamics in the SAS. The geometry of the SAS was reconstructed from a series of MRI images. CSF is modelled as an incompressible Newtonian fluid with a dynamic viscosity of 1 mPa s. Three computational models simulated CSF flow in either the unobstructed SAS, or with the SAS obstructed by a porous region simulating dorsal or circumferential arachnoiditis. The permeability of this porous obstruction was varied for the model with dorsal arachnoiditis. The results show that arachnoiditis increases flow resistance in the SAS and this is accompanied by a modest increase in magnitude and/or shift in timing (with respect to the cardiac cycle) of the CSF pressure drop across the region of arachnoiditis. This study suggests that syrinx formation may be related to a change in temporal CSF pulse pressure dynamics.


Journal of Neurosurgery | 2009

Role of the blood-spinal cord barrier in posttraumatic syringomyelia : laboratory investigation

Sarah J. Hemley; B. Biotech; Jian Tu; Marcus A. Stoodley

OBJECT Posttraumatic syringomyelia produces a significant burden of pain and neurological deficits in patients with spinal cord injury. The mechanism of syrinx formation is unknown and treatment is often ineffective. A possible explanation for syrinx formation is fluid leakage from the microcirculation in the presence of a compromised blood-spinal cord barrier (BSCB). The aim of this study was to investigate the structural and functional integrity of the BSCB in a model of posttraumatic syringomyelia. METHODS The excitotoxic amino acid and arachnoiditis model of syringomyelia was used in 27 Sprague-Dawley rats. Structural integrity of the BSCB was assessed using immunoreactivity to endothelial barrier antigen (EBA), and loss of functional integrity was assessed by extravasation of intravascular horseradish peroxidase. Animals were studied after 3 days, or at 1, 3, 6, or 12 weeks after surgery. There were laminectomy-only and saline injection control animals for comparison at each time point. RESULTS Syrinxes formed in 16 of the 17 animals injected with excitotoxic amino acid. Loss of structural and functional integrity of the BSCB in syrinx animals was noted at all time points. Disruption of the BSCB was most dramatic in tissue adjacent to the syrinx, and in the central and dorsal gray matter. Changes in EBA expression generally corresponded with altered vascular permeability, although in the acute stages, widespread vascular permeability occurred without a corresponding decrease in EBA expression. At the later time points (3-12 weeks) EBA expression was often absent, although no vascular leakage was observed. CONCLUSIONS This study demonstrated a prolonged structural and functional disruption of the BSCB in this model of posttraumatic syringomyelia. Loss of functional integrity of the BSCB, with fluid entering the interstitial space of the spinal cord, may contribute to initial cyst formation after spinal cord injury and subsequent enlargement of the cyst, to produce posttraumatic syringomyelia.


Journal of Neurotrauma | 2013

Aquaporin-4 Expression in Post-Traumatic Syringomyelia

Sarah J. Hemley; Lynne E. Bilston; Shaokoon Cheng; Jing Ning Chan; Marcus A. Stoodley

Aquaporin-4 (AQP4) is an astroglial water channel protein that plays an important role in the transmembrane movement of water within the central nervous system. AQP4 has been implicated in numerous pathological conditions involving abnormal fluid accumulation, including spinal cord edema following traumatic injury. AQP4 has not been studied in post-traumatic syringomyelia, a condition that cannot be completely explained by current theories of cerebrospinal fluid dynamics. Alterations of AQP4 expression or function may contribute to the fluid imbalance leading to syrinx formation or enlargement. The aim of this study was to examine AQP4 expression levels and distribution in an animal model of post-traumatic syringomyelia. Immunofluorescence and western blotting were used to assess AQP4 and glial fibrillary acidic protein (GFAP) expression in an excitotoxic amino acid/arachnoiditis model of post-traumatic syringomyelia in Sprague-Dawley rats. At all time-points, GFAP-positive astrocytes were observed in tissue surrounding syrinx cavities, although western blot analysis demonstrated an overall decrease in GFAP expression, except at the latest stage investigated. AQP4 expression was significantly higher at the level of syrinx at three and six weeks following the initial syrinx induction surgery. Significant increases in AQP4 expression also were observed in the upper cervical cord, rostral to the syrinx except in the acute stage of the condition at the three-day time-point. Immunostaining showed that AQP4 was expressed around all syrinx cavities, most notably adjacent to a mature syrinx (six- and 12-week time-point). This suggests a relationship between AQP4 and fluid accumulation in post-traumatic syringomyelia. However, whether this is a causal relationship or occurs in response to an increase in fluid needs to be established.


Neurosurgery | 2012

Fluid Outflow in a Large-Animal Model of Posttraumatic Syringomyelia

Johnny Wong; Sarah J. Hemley; Nigel R. Jones; Shaokoon Cheng; Lynne E. Bilston; Marcus A. Stoodley

BACKGROUND Posttraumatic syringomyelia affects approximately 28% of spinal cord injury patients, and current treatments are often ineffective. The pathogenesis of this condition remains poorly understood. Previous reports have focused on pathways and mechanisms of fluid inflow; however, disturbances of fluid outflow mechanisms and pathways may be important in syrinx formation and enlargement. OBJECTIVE To determine the route of fluid outflow from a syrinx in an animal model of posttraumatic syringomyelia. METHODS A model of posttraumatic syringomyelia using excitotoxic amino acid and kaolin-induced arachnoiditis was created in 12 Merino wethers. Six weeks after syrinx induction, the cavities were localized and a cerebrospinal fluid tracer, horseradish peroxidase (HRP), was injected into the syrinx under ultrasonic guidance. After 10 minutes, the animals were killed and the spinal cords harvested for microscopy. RESULTS An extracanalicular syrinx developed in 6 of the 12 sheep. HRP was successfully injected into 5 of the 6 syrinx cavities. HRP reaction product was observed in gray and white matter adjacent to the syrinx in a diffuse pattern. There were moderate amounts of HRP around the central canal and perivascular spaces and minimal amounts in the dorsal subarachnoid space. CONCLUSION In this model of posttraumatic syringomyelia, fluid outflow occurred in a diffuse manner into the surrounding extracellular space and toward the central canal and perivascular spaces. Fluid outflow may be an important consideration in the pathogenesis of syringomyelia and the development of new therapies.


Journal of Neurosurgery | 2016

Direct-trauma model of posttraumatic syringomyelia with a computer-controlled motorized spinal cord impactor

Johnny Wong; Xin Song; Sarah J. Hemley; Lynne E. Bilston; Shaokoon Cheng; Marcus A. Stoodley

OBJECTIVE The pathogenesis of posttraumatic syringomyelia remains enigmatic and is not adequately explained by current theories. Experimental investigations require a reproducible animal model that replicates the human condition. Current animal models are imperfect because of their low reliability, severe neurological deficits, or dissimilar mechanism of injury. The objective of this study was to develop a reproducible rodent model of posttraumatic syringomyelia using a spinal cord impactor that produces an injury that more closely mimics the human condition and does not produce severe neurological deficits. METHODS The study consisted of 2 parts. Seventy animals were studied overall: 20 in Experiment 1 and 48 in Experiment 2 after two rats with severe deficits were killed early. Experiment 1 aimed to determine the optimal force setting for inducing a cystic cavity without neurological deficits using a computer-controlled motorized spinal cord impactor. Twenty animals received an impact that ranged from 50 to 150 kDyn. Using the optimal force for producing an initial cyst determined from Experiment 1, Experiment 2 aimed to compare the progression of cavities in animals with and those without arachnoiditis induced by kaolin. Forty-eight animals were killed at 1, 3, 6, or 12 weeks after syrinx induction. Measurements of cavity size and maximum anteroposterior and lateral diameters were evaluated using light microscopy. RESULTS In Experiment 1, cavities were present in 95% of the animals. The duration of limb weakness and spinal cord cavity size correlated with the delivered force. The optimal force chosen for Experiment 2 was 75 kDyn. In Experiment 2, cavities occurred in 92% of the animals. Animals in the kaolin groups developed larger cavities and more vacuolations and enlarged perivascular spaces than those in the nonkaolin groups. CONCLUSIONS This impact model reliably produces cavities that resemble human posttraumatic syringomyelia and is suitable for further study of posttraumatic syringomyelia pathophysiology.


Journal of Neurosurgery | 2016

Longitudinal measurements of syrinx size in a rat model of posttraumatic syringomyelia

Elmira Najafi; Lynne E. Bilston; Xin Song; Andre Bongers; Marcus A. Stoodley; Shaokoon Cheng; Sarah J. Hemley

OBJECTIVE Syringomyelia pathophysiology is commonly studied using rodent models. However, in vivo studies of posttraumatic syringomyelia have been limited by the size of animals and lack of reliable noninvasive evaluation techniques. Imaging the rat spinal cord is particularly challenging because the spinal cord diameter is approximately 1-3 mm, and pathological lesions within the spinal cord parenchyma are even smaller. The standard technique has been histological evaluation, but this has its limitations. The aim of the present study was to determine whether syrinx size could be reliably measured using a preclinical high-field MRI animal system in a rat model of posttraumatic syringomyelia. METHODS The authors used an existing rat model of posttraumatic syringomyelia, which was created using a controlled pneumatic compression device to produce the initial spinal cord injury, followed by a subarachnoid injection of kaolin to produce arachnoiditis. T2-weighted MRI was performed on each animal using a 9.4-T scanner at 7, 10, and 13 weeks after injury. Animals were killed and syrinx sizes were calculated from in vivo MRI and histological studies. RESULTS MRI measurements of syrinx volume and length were closely correlated to histological measurements across all time points (Pearson product moment correlation coefficient r = ± 0.93 and 0.79, respectively). CONCLUSIONS This study demonstrates that high-field T2-weighted MRI can be used to measure syrinx size, and data correlate well with syrinx size measured using histological methods. Preclinical MRI may be a valuable noninvasive technique for tracking syrinx formation and enlargement in animal models of syringomyelia.


Scientific Reports | 2017

The ultrastructure of spinal cord perivascular spaces: Implications for the circulation of cerebrospinal fluid

Magdalena Lam; Sarah J. Hemley; Elmira Najafi; Nicole G. F. Vella; Lynne E. Bilston; Marcus A. Stoodley

Perivascular spaces play a pivotal role in the exchange between cerebrospinal and interstitial fluids, and in the clearance of waste in the CNS, yet their precise anatomical components are not well described. The aim of this study was to characterise the ultrastructure of perivascular spaces and their role in the transport of fluid, in the spinal cord of healthy rats, using transmission electron microscopy. The distribution of cerebrospinal fluid tracers injected into the subarachnoid space was studied using light, confocal and electron microscopy. Perivascular spaces were found around arterioles and venules, but not capillaries, throughout the spinal cord white and grey matter. They contained fibroblasts and collagen fibres, and were continuous with the extracellular spaces of the surrounding tissue. At 5 min post injection, tracers were seen in the subarachnoid space, the peripheral white matter, the perivascular spaces, basement membranes, extracellular spaces of the surrounding tissue, and surprisingly, in the lumen of blood vessels, suggesting trans-vascular clearance. These findings point out an unrecognised outflow pathway for CNS fluids, with potential implications for volume regulation in health and disease states, but also clinically for the detection of CNS-derived biomarkers in plasma, the immune response and drug pharmacokinetics.


American Journal of Neuroradiology | 2017

Characteristics of CSF Velocity-Time Profile in Posttraumatic Syringomyelia

J. Yeo; Shaokoon Cheng; Sarah J. Hemley; Bonsan B. Lee; Marcus A. Stoodley; Lynne E. Bilston

BACKGROUND AND PURPOSE: The development of syringomyelia has been associated with changes in CSF flow dynamics in the spinal subarachnoid space. However, differences in CSF flow velocity between patients with posttraumatic syringomyelia and healthy participants remains unclear. The aim of this work was to define differences in CSF flow above and below a syrinx in participants with posttraumatic syringomyelia and compare the CSF flow with that in healthy controls. MATERIALS AND METHODS: Six participants with posttraumatic syringomyelia were recruited for this study. Phase-contrast MR imaging was used to measure CSF flow velocity at the base of the skull and above and below the syrinx. Velocity magnitudes and temporal features of the CSF velocity profile were compared with those in healthy controls. RESULTS: CSF flow velocity in the spinal subarachnoid space of participants with syringomyelia was similar at different locations despite differences in syrinx size and locations. Peak cranial and caudal velocities above and below the syrinx were not significantly different (peak cranial velocity, P = .9; peak caudal velocity, P = 1.0), but the peak velocities were significantly lower (P < .001, P = .007) in the participants with syringomyelia compared with matched controls. Most notably, the duration of caudal flow was significantly shorter (P = .003) in the participants with syringomyelia. CONCLUSIONS: CSF flow within the posttraumatic syringomyelia group was relatively uniform along the spinal canal, but there are differences in the timing of CSF flow compared with that in matched healthy controls. This finding supports the hypothesis that syrinx development may be associated with temporal changes in spinal CSF flow.


Proceedings of the National Academy of Sciences of the United States of America | 2005

An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse

Marnie E. Blewitt; Nicola Vickaryous; Sarah J. Hemley; Alyson Ashe; Timothy James Bruxner; Jost Preis; Ruth M. Arkell; Emma Whitelaw

Collaboration


Dive into the Sarah J. Hemley's collaboration.

Top Co-Authors

Avatar

Marcus A. Stoodley

Australian School of Advanced Medicine

View shared research outputs
Top Co-Authors

Avatar

Lynne E. Bilston

Neuroscience Research Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alyson Ashe

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma Whitelaw

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Magdalena Lam

Victor Chang Cardiac Research Institute

View shared research outputs
Top Co-Authors

Avatar

Marnie E. Blewitt

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge