Sarah Keegan
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah Keegan.
Nature Methods | 2014
Peter C. Fridy; Yinyin Li; Sarah Keegan; Mary K Thompson; Ilona Nudelman; Johannes F. Scheid; Marlene Oeffinger; Michel C. Nussenzweig; David Fenyö; Brian T. Chait; Michael P. Rout
Nanobodies are single-domain antibodies derived from the variable regions of Camelidae atypical immunoglobulins. They show promise as high-affinity reagents for research, diagnostics and therapeutics owing to their high specificity, small size (∼15 kDa) and straightforward bacterial expression. However, identification of repertoires with sufficiently high affinity has proven time consuming and difficult, hampering nanobody implementation. Our approach generates large repertoires of readily expressible recombinant nanobodies with high affinities and specificities against a given antigen. We demonstrate the efficacy of this approach through the production of large repertoires of nanobodies against two antigens, GFP and mCherry, with Kd values into the subnanomolar range. After mapping diverse epitopes on GFP, we were also able to design ultrahigh-affinity dimeric nanobodies with Kd values as low as ∼30 pM. The approach presented here is well suited for the routine production of high-affinity capture reagents for various biomedical applications.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Dylan A. Reid; Sarah Keegan; Alejandra Leo-Macias; Go Watanabe; Natasha T. Strande; Howard H. Y. Chang; Betül Akgöl Oksuz; David Fenyö; Michael R. Lieber; Dale A. Ramsden; Eli Rothenberg
Significance Nonhomologous end-joining (NHEJ) is the main pathway for repair of DNA double-strand breaks (DSBs), the most cytotoxic form of DNA damage resulting from ionizing radiation, chemotherapeutics, and normal cellular processes. The mechanisms that control NHEJ play key roles in development, in immunity, and in response to cancer therapy; however, the current state of knowledge regarding the physical nature of the NHEJ repair process is limited. Here we used super-resolution microscopy to define the organization of NHEJ complexes in cells, showing that long filaments form at either side of the break. Single-molecule FRET revealed dynamic behavior in which breaks can pair in an adjacent, non–end-to-end configuration. Nonhomologous end-joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), involving synapsis and ligation of the broken strands. We describe the use of in vivo and in vitro single-molecule methods to define the organization and interaction of NHEJ repair proteins at DSB ends. Super-resolution fluorescence microscopy allowed the precise visualization of XRCC4, XLF, and DNA ligase IV filaments adjacent to DSBs, which bridge the broken chromosome and direct rejoining. We show, by single-molecule FRET analysis of the Ku/XRCC4/XLF/DNA ligase IV NHEJ ligation complex, that end-to-end synapsis involves a dynamic positioning of the two ends relative to one another. Our observations form the basis of a new model for NHEJ that describes the mechanism whereby filament-forming proteins bridge DNA DSBs in vivo. In this scheme, the filaments at either end of the DSB interact dynamically to achieve optimal configuration and end-to-end positioning and ligation.
Nature Methods | 2015
Zhanna Hakhverdyan; Michal Domanski; Loren E. Hough; Asha A. Oroskar; Anil Oroskar; Sarah Keegan; David J. Dilworth; Kelly R. Molloy; Vadim Sherman; John D. Aitchison; David Fenyö; Brian T. Chait; Torben Heick Jensen; Michael P. Rout; John LaCava
We must reliably map the interactomes of cellular macromolecular complexes in order to fully explore and understand biological systems. However, there are no methods to accurately predict how to capture a given macromolecular complex with its physiological binding partners. Here, we present a screening method that comprehensively explores the parameters affecting the stability of interactions in affinity-captured complexes, enabling the discovery of physiological binding partners in unparalleled detail. We have implemented this screen on several macromolecular complexes from a variety of organisms, revealing novel profiles for even well-studied proteins. Our approach is robust, economical and automatable, providing inroads to the rigorous, systematic dissection of cellular interactomes.
Nature microbiology | 2016
Yang Luo; Erica Y. Jacobs; Todd M. Greco; Kevin D. Mohammed; Tommy Tong; Sarah Keegan; James M. Binley; Ileana M. Cristea; David Fenyö; Michael P. Rout; Brian T. Chait; Mark A. Muesing
Although genetically compact, HIV-1 commandeers vast arrays of cellular machinery to sustain and protect it during cycles of viral outgrowth. Transposon-mediated saturation linker scanning mutagenesis was used to isolate fully replication-competent viruses harbouring a potent foreign epitope tag. Using these viral isolates, we performed differential isotopic labelling and affinity-capture mass spectrometric analyses on samples obtained from cultures of human lymphocytes to classify the vicinal interactomes of the viral Env and Vif proteins as they occur during natural infection. Importantly, interacting proteins were recovered without bias, regardless of their potential for positive, negative or neutral impact on viral replication. We identified specific host associations made with trimerized Env during its biosynthesis, at virological synapses, with innate immune effectors (such as HLA-E) and with certain cellular signalling pathways (for example, Notch1). We also defined Vif associations with host proteins involved in the control of nuclear transcription and nucleoside biosynthesis as well as those interacting stably or transiently with the cytoplasmic protein degradation apparatus. Our approach is broadly applicable to elucidating pathogen–host interactomes, providing high-certainty identification of interactors by their direct access during cycling infection. Understanding the pathophysiological consequences of these associations is likely to provide strategic targets for antiviral intervention.
Scientific Reports | 2017
Keria Bermudez-Hernandez; Sarah Keegan; Donna R. Whelan; Dylan A. Reid; Jennifer Zagelbaum; Yandong Yin; Sisi Ma; Eli Rothenberg; David Fenyö
We introduce the Interaction Factor (IF), a measure for quantifying the interaction of molecular clusters in super-resolution microscopy images. The IF is robust in the sense that it is independent of cluster density, and it only depends on the extent of the pair-wise interaction between different types of molecular clusters in the image. The IF for a single or a collection of images is estimated by first using stochastic modelling where the locations of clusters in the images are repeatedly randomized to estimate the distribution of the overlaps between the clusters in the absence of interaction (IF = 0). Second, an analytical form of the relationship between IF and the overlap (which has the random overlap as its only parameter) is used to estimate the IF for the experimentally observed overlap. The advantage of IF compared to conventional methods to quantify interaction in microscopy images is that it is insensitive to changing cluster density and is an absolute measure of interaction, making the interpretation of experiments easier. We validate the IF method by using both simulated and experimental data and provide an ImageJ plugin for determining the IF of an image.
Journal of Proteome Research | 2016
Sarah Keegan; John P. Cortens; Ronald C. Beavis; David Fenyö
Large scale proteomics have made it possible to broadly screen samples for the presence of many types of post-translational modifications, such as phosphorylation, acetylation, and ubiquitination. This type of data has allowed the localization of these modifications to either a specific site on a proteolytically generated peptide or to within a small domain on the peptide. The resulting modification acceptor sites can then be mapped onto the appropriate protein sequences and the information archived. This paper describes the usage of a very large archive of experimental observations of human post-translational modifications to create a map of the most reproducible modification observations onto the complete set of human protein sequences. This set of modification acceptor sites was then directly translated into the genomic coordinates for the codons for the residues at those sites. We constructed the database g2pDB using this protein-to-codon site mapping information. The information in g2pDB has been made available through a RESTful-style API, allowing researchers to determine which specific protein modifications would be perturbed by a set of observed nucleotide variants determined by high throughput DNA or RNA sequencing.
Microscopy and Microanalysis | 2016
Donna R. Whelan; Yandong Yin; Keria Bermudez-Hernandez; Sarah Keegan; David Fenyö; Eli Rothenberg
The collective DNA Damage Response (DDR) network of cellular pathways serves to prevent, recognize, and repair DNA damage resulting from both endogenous and exogenous sources. Unchecked or misrepaired, DNA damage causes genomic instability and mutagenesis, cell death, and various types of cancer [1]. DNA replication during S phase is a process particularly prone to endogenous damage because of the requirement for the entire genomic DNA to be unwound and duplicated over a relatively short time period (minutes in yeast, hours in mammals). To achieve this, any impediments or corruptions to the DNA template such as bound transcription complexes, small molecules, or unusual secondary structures, must be removed. If these impediments are not easily removed they can cause replication fork (RF) slowing, stalling, and eventual regression or collapse. In the latter case, the single sided double strand break (DSB) that occurs must be repaired with high fidelity to ensure the viability of the cell. To do this, the homologous recombination (HR) DSB repair machinery completes a number of sequential operations: first to resect the DSB to generate a ssDNA overhang, then to generate a Rad51/ssDNA nucleofilament which conducts a homology search of the genomic DNA, and then synthesis of new DNA using the homologous sequence [2].
bioRxiv | 2018
Yu-Hung Chen; Sarah Keegan; Malik Kahli; Peter Tonzi; David Fenyö; Tony T. Huang; Duncan J. Smith
The locations of active DNA replication origins in the human genome, and the determinants of origin activation, remain controversial. Additionally, neither the predominant sites of replication termination nor the impact of transcription on replication-fork mobility have been defined. We demonstrate that replication initiation occurs preferentially in the immediate vicinity of the transcription start site of genes occupied by high levels of RNA polymerase II, ensuring co-directional replication of the most highly transcribed genes. Further, we demonstrate that dormant replication origin firing represents the global activation of pre-existing origins. We also show that DNA replication naturally terminates at the polyadenylation site of transcribed genes. During replication stress, termination is redistributed to gene bodies, generating a global reorientation of replication relative to transcription. Our analysis provides a unified model for the coupling of transcription with replication initiation and termination in human cells.
bioRxiv | 2018
Michele Pagano; Yeon-Tae Jeong; D. Simoneschi; Sarah Keegan; D. Melville; N. Adler; Anita Saraf; Laurence Florens; Michael P. Washburn; C. Cavasotto; D. Fenyö; Ana Maria Cuervo; M. Rossi
In response to nutrient deprivation, the cell needs to mobilize an extensive amount of membrane to form and grow the autophagosome, allowing the progression of autophagy. By providing membranes and a source for LC3 lipidation, COPII (Coat Protein Complex II) localizes to the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) and promotes autophagosome biogenesis. However, the molecular mechanisms that, in response to starvation, divert COPII from the secretory pathway to the autophagic pathway are largely unknown. Here, we show that the F-box protein FBXW5 targets SEC23B, a component of COPII, for proteasomal degradation and that this event limits the autophagic flux in the presence of nutrients. In response to starvation, ULK1 phosphorylates SEC23B on Serine 186, preventing the interaction of SEC23B with FBXW5 and, therefore, inhibiting its degradation. Phosphorylated and stabilized SEC23B associates with SEC24A and SEC24B, but not SEC24C and SEC24D, and they re-localize to the ERGIC, promoting autophagic flux. Induction of autophagy and localization of both SEC23B and SEC24B to the ERGIC in response to nutrient deprivation are significantly reduced in SEC23B(S186A) knock-in cells. We propose that, in the presence of nutrients, FBXW5 limits COPII-mediated autophagosome biogenesis. Inhibition of this event by ULK1 ensures efficient execution of the autophagic cascade in response to nutrient starvation.
Nature Communications | 2018
Donna R. Whelan; Wei Ting C. Lee; Yandong Yin; Dylan M. Ofri; Keria Bermudez-Hernandez; Sarah Keegan; David Fenyö; Eli Rothenberg
Homologous recombination (HR) is a crucial pathway for the repair of DNA double-strand breaks. BRCA1/2 breast cancer proteins are key players in HR via their mediation of RAD51 nucleofilament formation and function; however, their individual roles and crosstalk in vivo are unknown. Here we use super-resolution (SR) imaging to map the spatiotemporal kinetics of HR proteins, revealing the interdependent relationships that govern the dynamic interplay and progression of repair events. We show that initial single-stranded DNA/RAD51 nucleofilament formation is mediated by RAD52 or, in the absence of RAD52, by BRCA2. In contrast, only BRCA2 can orchestrate later RAD51 recombinase activity during homology search and resolution. Furthermore, we establish that upstream BRCA1 activity is critical for BRCA2 function. Our analyses reveal the underlying epistatic landscape of RAD51 functional dependence on RAD52, BRCA1, and BRCA2 during HR and explain the phenotypic similarity of diseases associated with mutations in these proteins.How factors involved in homologous recombination interact and function is a matter of interest. Here the authors use super-resolution imaging to describe the spatiotemporal dynamics of proteins associated with homologous recombination DNA repair in response to replication stress.