Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah L. Farnworth is active.

Publication


Featured researches published by Sarah L. Farnworth.


American Journal of Pathology | 2008

Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis.

Neil C. Henderson; Alison C. MacKinnon; Sarah L. Farnworth; Tiina Kipari; Christopher Haslett; John P. Iredale; Fu Tong Liu; Jeremy Hughes; Tariq Sethi

Macrophages have been proposed as a key cell type in the pathogenesis of renal fibrosis; however, the mechanism by which macrophages drive fibrosis is still unclear. We show that expression of galectin-3, a beta-galactoside-binding lectin, is up-regulated in a mouse model of progressive renal fibrosis (unilateral ureteric obstruction, UUO), and absence of galectin-3 protects against renal myofibroblast accumulation/activation and fibrosis. Furthermore, specific depletion of macrophages using CD11b-DTR mice reduces fibrosis severity after UUO demonstrating that macrophages are key cells in the pathogenesis of renal fibrosis. Disruption of the galectin-3 gene does not affect macrophage recruitment after UUO, or macrophage proinflammatory cytokine profiles in response to interferon-gamma/lipopolysaccharide. In addition, absence of galectin-3 does not affect transforming growth factor-beta expression or Smad 2/3 phosphorylation in obstructed kidneys. Adoptive transfer of wild-type but not galectin-3(-/-) macrophages did, however, restore the fibrotic phenotype in galectin-3(-/-) mice. Cross-over experiments using wild-type and galectin-3(-/-) macrophage supernatants and renal fibroblasts confirmed that secretion of galectin-3 by macrophages is critical in the activation of renal fibroblasts to a profibrotic phenotype. Therefore, we demonstrate for the first time that galectin-3 expression and secretion by macrophages is a major mechanism linking macrophages to the promotion of renal fibrosis.


Journal of Immunology | 2008

Regulation of Alternative Macrophage Activation by Galectin-3

Alison C. MacKinnon; Sarah L. Farnworth; Philip S. Hodkinson; Neil C. Henderson; Kirsten M. Atkinson; Hakon Leffler; Ulf J. Nilsson; Christopher Haslett; Stuart J. Forbes; Tariq Sethi

Alternative macrophage activation is implicated in diverse disease pathologies such as asthma, organ fibrosis, and granulomatous diseases, but the mechanisms underlying macrophage programming are not fully understood. Galectin-3 is a carbohydrate-binding lectin present on macrophages. We show that disruption of the galectin-3 gene in 129sv mice specifically restrains IL-4/IL-13-induced alternative macrophage activation in bone marrow-derived macrophages in vitro and in resident lung and recruited peritoneal macrophages in vivo without affecting IFN-γ/LPS-induced classical activation or IL-10-induced deactivation. IL-4-mediated alternative macrophage activation is inhibited by siRNA-targeted deletion of galectin-3 or its membrane receptor CD98 and by inhibition of PI3K. Increased galectin-3 expression and secretion is a feature of alternative macrophage activation. IL-4 stimulates galectin-3 expression and release in parallel with other phenotypic markers of alternative macrophage activation. By contrast, classical macrophage activation with LPS inhibits galectin-3 expression and release. Galectin-3 binds to CD98, and exogenous galectin-3 or cross-linking CD98 with the mAb 4F2 stimulates PI3K activation and alternative activation. IL-4-induced alternative activation is blocked by bis-(3-deoxy-3-(3-methoxybenzamido)-β-D-galactopyranosyl) sulfane, a specific inhibitor of extracellular galectin-3 carbohydrate binding. These results demonstrate that a galectin-3 feedback loop drives alternative macrophage activation. Pharmacological modulation of galectin-3 function represents a novel therapeutic strategy in pathologies associated with alternatively activated macrophages.


American Journal of Respiratory and Critical Care Medicine | 2012

Regulation of Transforming Growth Factor-beta 1-driven Lung Fibrosis by Galectin-3

Alison C. MacKinnon; Michael Gibbons; Sarah L. Farnworth; Hakon Leffler; Ulf J. Nilsson; Tamara Delaine; A. John Simpson; Stuart J. Forbes; Nikhil Hirani; Jack Gauldie; Tariq Sethi

RATIONALE Idiopathic pulmonary fibrosis (IPF) is a chronic dysregulated response to alveolar epithelial injury with differentiation of epithelial cells and fibroblasts into matrix-secreting myofibroblasts resulting in lung scaring. The prognosis is poor and there are no effective therapies or reliable biomarkers. Galectin-3 is a β-galactoside binding lectin that is highly expressed in fibrotic tissue of diverse etiologies. OBJECTIVES To examine the role of galectin-3 in pulmonary fibrosis. METHODS We used genetic deletion and pharmacologic inhibition in well-characterized murine models of lung fibrosis. Further mechanistic studies were performed in vitro and on samples from patients with IPF. MEASUREMENTS AND MAIN RESULTS Transforming growth factor (TGF)-β and bleomycin-induced lung fibrosis was dramatically reduced in mice deficient in galectin-3, manifest by reduced TGF-β1-induced EMT and myofibroblast activation and collagen production. Galectin-3 reduced phosphorylation and nuclear translocation of β-catenin but had no effect on Smad2/3 phosphorylation. A novel inhibitor of galectin-3, TD139, blocked TGF-β-induced β-catenin activation in vitro and in vivo and attenuated the late-stage progression of lung fibrosis after bleomycin. There was increased expression of galectin-3 in the bronchoalveolar lavage fluid and serum from patients with stable IPF compared with nonspecific interstitial pneumonitis and controls, which rose sharply during an acute exacerbation suggesting that galectin-3 may be a marker of active fibrosis in IPF and that strategies that block galectin-3 may be effective in treating acute fibrotic exacerbations of IPF. CONCLUSIONS This study identifies galectin-3 as an important regulator of lung fibrosis and provides a proof of principle for galectin-3 inhibition as a potential novel therapeutic strategy for IPF.


American Journal of Pathology | 2008

Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function

Sarah L. Farnworth; Neil C. Henderson; Alison C. MacKinnon; Kirsten M. Atkinson; Thomas S. Wilkinson; Kevin Dhaliwal; Katsutoshi Hayashi; A. John Simpson; Adriano G. Rossi; Christopher Haslett; Tariq Sethi

The Gram-positive Streptococcus pneumoniae is the leading cause of community-acquired pneumonia worldwide, resulting in high mortality. Our in vivo studies show that galectin-3(-/-) mice develop more severe pneumonia after infection with S. pneumoniae, as demonstrated by increased bacteremia and lung damage compared to wild-type mice and that galectin-3 reduces the severity of pneumococcal pneumonia in part by augmenting neutrophil function. Specifically, we show that 1) galectin-3 directly acts as a neutrophil-activating agent and potentiates the effect of fMLP, 2) exogenous galectin-3 augments neutrophil phagocytosis of bacteria and delays neutrophil apoptosis, 3) phagocytosis of apoptotic neutrophils by galectin-3(-/-) macrophages is less efficient compared to wild type, and 4) galectin-3 demonstrates bacteriostatic properties against S. pneumoniae in vitro. Furthermore, ad-back of recombinant galectin-3 in vivo protects galectin-3-deficient mice from developing severe pneumonia. Together, these results demonstrate that galectin-3 is a key molecule in the host defense against pneumococcal infection. Therapeutic strategies designed to augment galectin-3 activity may both enhance inflammatory cell function (by directly affecting neutrophil responsiveness and prolonging neutrophil longevity) and have direct bacteriostatic activity, improving clinical outcomes after severe pneumococcal infection.


Stem Cells Translational Medicine | 2014

Accurate Prediction of Drug-Induced Liver Injury Using Stem Cell-Derived Populations

Dagmara Szkolnicka; Sarah L. Farnworth; Baltasar Lucendo-Villarin; Christopher Storck; Wenli Zhou; John P. Iredale; Oliver P. Flint; David C. Hay

Despite major progress in the knowledge and management of human liver injury, there are millions of people suffering from chronic liver disease. Currently, the only cure for end‐stage liver disease is orthotopic liver transplantation; however, this approach is severely limited by organ donation. Alternative approaches to restoring liver function have therefore been pursued, including the use of somatic and stem cell populations. Although such approaches are essential in developing scalable treatments, there is also an imperative to develop predictive human systems that more effectively study and/or prevent the onset of liver disease and decompensated organ function. We used a renewable human stem cell resource, from defined genetic backgrounds, and drove them through developmental intermediates to yield highly active, drug‐inducible, and predictive human hepatocyte populations. Most importantly, stem cell‐derived hepatocytes displayed equivalence to primary adult hepatocytes, following incubation with known hepatotoxins. In summary, we have developed a serum‐free, scalable, and shippable cell‐based model that faithfully predicts the potential for human liver injury. Such a resource has direct application in human modeling and, in the future, could play an important role in developing renewable cell‐based therapies.


Stem cell reports | 2014

Modulating Innate Immunity Improves Hepatitis C Virus Infection and Replication in Stem Cell-Derived Hepatocytes

Xiaoling Zhou; Pingnan Sun; Baltasar Lucendo-Villarin; Allan G. N. Angus; Dagmara Szkolnicka; Katherine Cameron; Sarah L. Farnworth; Arvind H. Patel; David C. Hay

Summary In this study, human embryonic stem cell-derived hepatocytes (hESC-Heps) were investigated for their ability to support hepatitis C virus (HCV) infection and replication. hESC-Heps were capable of supporting the full viral life cycle, including the release of infectious virions. Although supportive, hESC-Hep viral infection levels were not as great as those observed in Huh7 cells. We reasoned that innate immune responses in hESC-Heps may lead to the low level of infection and replication. Upon further investigation, we identified a strong type III interferon response in hESC-Heps that was triggered by HCV. Interestingly, specific inhibition of the JAK/STAT signaling pathway led to an increase in HCV infection and replication in hESC-Heps. Of note, the interferon response was not evident in Huh7 cells. In summary, we have established a robust cell-based system that allows the in-depth study of virus-host interactions in vitro.


Current Biology | 2015

Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma

Catriona A. Ford; Sofia Petrova; John D. Pound; Jorine J.L.P. Voss; Lynsey Melville; Margaret Paterson; Sarah L. Farnworth; Awen Myfanwy Gallimore; Simone Cuff; Helen Wheadon; Edwina Dobbin; Carol Anne Ogden; Ingrid E. Dumitriu; Donald R. Dunbar; Paul G. Murray; Dominik Rückerl; Judith E. Allen; David A. Hume; Nico van Rooijen; John R. Goodlad; Tom C. Freeman; Christopher D. Gregory

Summary Background Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Results Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased “in situ transcriptomics” analysis—gene expression profiling of laser-captured TAMs to establish their activation signature in situ—we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. Conclusions In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy.


International Journal of Molecular Sciences | 2013

Modeling human liver biology using stem cell-derived hepatocytes

Pingnan Sun; Xiaoling Zhou; Sarah L. Farnworth; Arvind H. Patel; David C. Hay

Stem cell-derived hepatocytes represent promising models to study human liver biology and disease. This concise review discusses the recent progresses in the field, with a focus on human liver disease, drug metabolism and virus infection.


Advances in Experimental Medicine and Biology | 2016

Axl and Mer Receptor Tyrosine Kinases: Distinct and Nonoverlapping Roles in Inflammation and Cancer?

Ian Dransfield; Sarah L. Farnworth

The receptor tyrosine kinases Axl and Mer subserve the process of termination of proinflammatory signaling and have key roles in both the resolution of inflammation and restoration of homeostasis. Axl functions prominently under conditions of tissue stress or in response to infection, whereas Mer has a major role in maintenance of homeostasis within tissues. Distinct patterns of expression of Axl and Mer underlie their clearly defined functional roles during the initiation and progression of inflammation. Axl and Mer are expressed by tumor cells and by infiltrating inflammatory cells and the regulation of cellular function via Axl and Mer signaling is also important for tumorigenesis, tumor progression, and metastasis. In this review, we consider the divergent functions of Axl and Mer in the context of inflammatory processes within tumors and the implications for development of therapeutic agents targeting these receptors.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Galectin-3 regulates myofibroblast activation and hepatic fibrosis.

Neil C. Henderson; Alison C. MacKinnon; Sarah L. Farnworth; Françoise Poirier; Francesco Paolo Russo; John P. Iredale; Christopher Haslett; Kenneth J. Simpson; Tariq Sethi

Collaboration


Dive into the Sarah L. Farnworth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Hay

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge