Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah L. Irons is active.

Publication


Featured researches published by Sarah L. Irons.


Journal of Microscopy | 2004

GFP is the way to glow: bioimaging of the plant endomembrane system

Federica Brandizzi; Sarah L. Irons; J. Johansen; Amanda M. Kotzer; Ulla Neumann

It is less than a decade that the green fluorescent protein (GFP) and its spectral variants have changed the approach to studying the dynamics of the plant secretory pathway. GFP technology has in fact shed new light on secretory events by allowing bioimaging in vivo right to the heart of a plant cell. This review highlights exciting discoveries and the most recent developments in the understanding of morphology and dynamics of the plant secretory pathway achieved with the application of fluorescent proteins.


Radiation Research | 2012

Possible Role of Exosomes Containing RNA in Mediating Nontargeted Effect of Ionizing Radiation

Ammar H. J. Al-Mayah; Sarah L. Irons; Ryan Charles Pink; David Raul Francisco Carter; Munira Kadhim

Communication between irradiated and un-irradiated (bystander) cells can cause damage in cells that are not directly targeted by ionizing radiation, a process known as the bystander effect. Bystander effects can also lead to chromosomal/genomic instability within the progeny of bystander cells, similar to the progeny of directly irradiated cells. The factors that mediate this cellular communication can be transferred between cells via gap junctions or released into the extracellular media following irradiation, but their nature has not been fully characterized. In this study we tested the hypothesis that the bystander effect mediator contains an RNA molecule that may be carried by exosomes. MCF7 cells were irradiated with 2 Gy of X rays and the extracellular media was harvested. RNase treatment abrogated the ability of the media to induce early and late chromosomal damage in bystander cells. Furthermore, treatment of bystander cells with exosomes isolated from this media increased the levels of genomic damage. These results suggest that the bystander effect, and genomic instability, are at least in part mediated by exosomes and implicate a role for RNA.


Current protocols in pharmacology | 2003

BY‐2 Cells: Culture and Transformation for Live Cell Imaging

Federica Brandizzi; Sarah L. Irons; Anne Kearns; Chris Hawes

Tobacco Bright Yellow‐2 (BY‐2) suspension cells are a widely used biological material for studying plant cell morphology and physiology. These cells are easy to transform and maintain in culture and tolerate transformation with fluorescent proteins such as the green fluorescent protein and its derivatives. These, by the addition of plant or mammalian targeting sequences, can be directed to specific subcellular locations for the study of cell dynamics in vivo.


Mutation Research | 2015

The non-targeted effects of radiation are perpetuated by exosomes.

Ammar H. J. Al-Mayah; Scott Bright; Kim Chapman; Sarah L. Irons; Ping Luo; David Raul Francisco Carter; Edwin H. Goodwin; Munira Kadhim

Exosomes contain cargo material from endosomes, cytosol, plasma membrane and microRNA molecules, they are released by a number of non-cancer and cancer cells into both the extracellular microenvironment and body fluids such as blood plasma. Recently we demonstrated radiation-induced non-targeted effects [NTE: genomic instability (GI) and bystander effects (BE)] are partially mediated by exosomes, particularly the RNA content. However the mechanistic role of exosomes in NTE is yet to be fully understood. The present study used MCF7 cells to characterise the longevity of exosome-induced activity in the progeny of irradiated and unirradiated bystander cells. Exosomes extracted from conditioned media of irradiated and bystander progeny were added to unirradiated cells. Analysis was carried out at 1 and 20/24 population doublings following medium/exosome transfer for DNA/chromosomal damage. Results confirmed exosomes play a significant role in mediating NTE of ionising radiation (IR). This effect was remarkably persistent, observed >20 doublings post-irradiation in the progeny of bystander cells. Additionally, cell progeny undergoing a BE were themselves capable of inducing BE in other cells via exosomes they released. Furthermore we investigated the role of exosome cargo. Culture media from cells exposed to 2 Gy X-rays was subjected to ultracentrifugation and four inoculants prepared, (a) supernatants with exosomes removed, and pellets with (b) exosome proteins denatured, (c) RNA degraded, and (d) a combination of protein-RNA inactivation. These were added to separate populations of unirradiated cells. The BE was partially inhibited when either exosome protein or exosome RNA were inactivated separately, whilst combined RNA-protein inhibition significantly reduced or eliminated the BE. These results demonstrate that exosomes are associated with long-lived signalling of the NTE of IR. Both RNA and protein molecules of exosomes work in a synergistic manner to initiate NTE, spread these effects to naïve cells, and perpetuate GI in the affected cells.


Biology of the Cell | 2007

Retention and mobility of the mammalian lamin B receptor in the plant nuclear envelope

Katja Graumann; Sarah L. Irons; John Runions; David E. Evans

Background information. In a previous study, we showed that GFP (green fluorescent protein) fused to the N‐terminal 238 amino acids of the mammalian LBR (lamin B receptor) localized to the NE (nuclear envelope) when expressed in the plant Nicotiana tabacum. The protein was located in the NE during interphase and migrated with nuclear membranes during cell division. Targeting and retention of inner NE proteins requires several mechanisms: signals that direct movement through the nuclear pore complex, presence of a transmembrane domain or domains and retention by interaction with nuclear or nuclear‐membrane constituents.


Plant Biotechnology Journal | 2008

Anchorage to the cytosolic face of the endoplasmic reticulum membrane: a new strategy to stabilize a cytosolic recombinant antigen in plants

Alessandra Barbante; Sarah L. Irons; Chris Hawes; Lorenzo Frigerio; Alessandro Vitale; Emanuela Pedrazzini

The levels of accumulation of recombinant vaccines in transgenic plants are protein specific and strongly influenced by the subcellular compartment of destination. The human immunodeficiency virus protein Nef (negative factor), a promising target for the development of an antiviral vaccine, is a cytosolic protein that accumulates to low levels in transgenic tobacco and is even more unstable when introduced into the secretory pathway, probably because of folding defects in the non-cytosolic environment. To improve Nef accumulation, a new strategy was developed to anchor the molecule to the cytosolic face of the endoplasmic reticulum (ER) membrane. For this purpose, the Nef sequence was fused to the C-terminal domain of mammalian ER cytochrome b5, a long-lived, tail-anchored (TA) protein. This consistently increased Nef accumulation by more than threefold in many independent transgenic tobacco plants. Real-time polymerase chain reaction of mRNA levels and protein pulse-chase analysis indicated that the increase was not caused by higher transcript levels but by enhanced protein stability. Subcellular fractionation and immunocytochemistry indicated that Nef-TA accumulated on the ER membrane. Over-expression of mammalian or plant ER cytochrome b5 caused the formation of stacked membrane structures, as observed previously in similar experiments performed in mammalian cells; however, Nef-TA did not alter membrane organization in tobacco cells. Finally, Nef could be removed in vitro by its tail-anchor, taking advantage of an engineered thrombin cleavage site. These results open up the way to use tail-anchors to improve foreign protein stability in the plant cytosol without perturbing cellular functions.


Journal of Virology | 2014

Superinfection Exclusion in Alphabaculovirus Infections Is Concomitant with Actin Reorganization

Inés Beperet; Sarah L. Irons; Oihane Simón; Linda A. King; Trevor Williams; Robert D. Possee; Miguel López-Ferber; Primitivo Caballero

ABSTRACT Superinfection exclusion is the ability of an established virus to interfere with a second virus infection. This effect was studied in vitro during lepidopteran-specific nucleopolyhedrovirus (genus Alphabaculovirus, family Baculoviridae) infection. Homologous interference was detected in Sf9 cells sequentially infected with two genotypes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), each one expressing a different fluorescent protein. This was a progressive process in which a sharp decrease in the signs of infection caused by the second virus was observed, affecting not only the number of coinfected cells observed, but also the level of protein expression due to the second virus infection. Superinfection exclusion was concurrent with reorganization of cytoplasmic actin to F-actin in the nucleus, followed by budded virus production (16 to 20 h postinfection). Disruption of actin filaments by cell treatment with cytochalasin D resulted in a successful second infection. Protection against heterologous nucleopolyhedrovirus infection was also demonstrated, as productive infection of Sf9 cells by Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) was inhibited by prior infection with AcMNPV, and vice versa. Finally, coinfected cells were observed following inoculation with mixtures of these two phylogenetically distant nucleopolyhedroviruses—AcMNPV and SfMNPV—but at a frequency lower than predicted, suggesting interspecific virus interference during infection or replication. The temporal window of infection is likely necessary to maintain genotypic diversity that favors virus survival but also permits dual infection by heterospecific alphabaculoviruses. IMPORTANCE Infection of a cell by more than one virus particle implies sharing of cell resources. We show that multiple infection, by closely related or distantly related baculoviruses, is possible only during a brief window of time that allows additional virus particles to enter an infected cell over a period of ca. 16 h but then blocks multiple infections as newly generated virus particles begin to leave the infected cell. This temporal window has two important consequences. First, it allows multiple genotypes to almost simultaneously infect cells within the host, thus generating genetically diverse virus particles for transmission. Second, it provides a mechanism by which different viruses replicating in the same cell nucleus can exchange genetic material, so that the progeny viruses may be a mosaic of genes from each of the parental viruses. This opens a completely new avenue of research into the evolution of these insect pathogens.


Archive | 2009

The Plant Nuclear Envelope

David E. Evans; Sarah L. Irons; Katja Graumann; John Runions

The nuclear envelope is an important but poorly studied dynamic mem- brane system in plants. In particular, surprisingly little is known about the proteins of the higher plant nuclear envelope and their interactions. While structurally similar to the nuclear envelope of other kingdoms, unique properties suggest significant differences. For instance, plants lack sequence homologues of the lamins and instead of centrosomes the entire nuclear envelope surface acts as a microtubule- organising centre. This chapter reviews the structure of the nuclear envelope in relation to its protein domains, namely the inner and outer membrane, and the pore domain. Recent advances in the characterisation of novel proteins from these domains are presented. In addition, new insights into mechanisms for the targeting and retention of nuclear envelope proteins are discussed. The nuclear envelope is of importance in cell signalling and evidence for physical nucleo-cytoskeletal linkage and for the nucleoplasm and periplasm as calcium signalling pools are considered. Finally, the behaviour of inner nuclear membrane proteins during the breakdown and reformation of the nuclear envelope in mitosis is discussed.


International Journal of Radiation Biology | 2012

The Effect of Genetic Background and Dose on Non-Targeted Effects of Radiation

Sarah L. Irons; Virginia Serra; Deborah Bowler; Kim Chapman; Stefania Militi; Fiona M. Lyng; Munira Kadhim

Abstract Purpose: This work investigates the hypothesis that genetic background plays a significant role in the signalling mechanisms underlying induction and perpetuation of genomic instability following radiation exposure. Materials and methods: Bone marrow from two strains of mice (CBA and C57) were exposed to a range of X-ray doses (0, 0.01, 0.1, 1 and 3 Gy). Different cellular signalling endpoints: Apoptosis, cytokine levels and calcium flux, were evaluated at 2 h, 24 h and 7 d post-irradiation to assess immediate and delayed effects. Results: In CBA (radiosensitive) elevated apoptosis levels were observed at 24 h post X-irradiation, and transforming growth factor-β (TGF-β) levels which increased with time and dose. C57 showed a higher background level of apoptosis, and sustained apoptotic levels 7 days after radiation exposure. Levels of tumor necrosis factor-α (TNF-α were increased in C57 at day 7 for higher X-ray doses. TGF-β levels were higher in CBA, whilst C57 exhibited a greater TNF-α response. Calcium flux was induced in reporter cells on exposure to conditioned media from both strains. Conclusions: These results show genetic and dose specific differences in radiation-induced signalling in the initiation and perpetuation of the instability process, which have potential implications on evaluation of non-targeted effects in radiation risk assessment.


Protoplasma | 2012

Host cell processes to accomplish mechanical and non-circulative virus transmission

Aurélie Bak; Sarah L. Irons; Alexandre Martinière; Stéphane Blanc; Martin Drucker

Mechanical vector-less transmission of viruses, as well as vector-mediated non-circulative virus transmission, where the virus attaches only to the exterior of the vector during the passage to a new host, are apparently simple processes: the viruses are carried along with the wind, the food or by the vector to a new host. We discuss here, using the examples of the non-circulatively transmitted Cauliflower mosaic virus that binds to its aphid vectors exterior mouthparts, and that of the mechanically (during feeding activity) transmitted Autographa californica multicapsid nucleopolyhedrovirus, that transmission of these viruses is not so simple as previously thought. Rather, these viruses prepare their transmission carefully and long before the actual acquisition event. Host–virus interactions play a pivotal and specialised role in the future encounter with the vector or the new host. This ensures optimal propagation and enlarges the tremendous bottleneck transmission presents for viruses and other pathogens.

Collaboration


Dive into the Sarah L. Irons's collaboration.

Top Co-Authors

Avatar

David E. Evans

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar

John Runions

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar

Katja Graumann

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Hawes

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar

Munira Kadhim

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Chapman

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar

Linda A. King

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar

Robert D. Possee

Mansfield University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge