Katja Graumann
Oxford Brookes University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katja Graumann.
Plant Journal | 2010
Katja Graumann; John Runions; David E. Evans
Sad1/UNC-84 (SUN)-domain proteins are inner nuclear membrane (INM) proteins that are part of bridging complexes linking cytoskeletal elements with the nucleoskeleton, and have been shown to be conserved in non-plant systems. In this paper, we report the presence of members of this family in the plant kingdom, and investigate the two Arabidopsis SUN-domain proteins, AtSUN1 and AtSUN2. Our results indicate they contain the highly conserved C-terminal SUN domain, and share similar structural features with animal and fungal SUN-domain proteins including a functional coiled-coil domain and nuclear localization signal. Both are expressed in various tissues with AtSUN2 expression levels relatively low but upregulated in proliferating tissues. Further, we found AtSUN1 and AtSUN2 expressed as fluorescent protein fusions, to localize to and show low mobility in the nuclear envelope (NE), particularly in the INM. Deletion of various functional domains including the N terminus and coiled-coil domain affect the localization and increase the mobility of AtSUN1 and AtSUN2. Finally, we present evidence that AtSUN1 and AtSUN2 are present as homomers and heteromers in vivo, and that the coiled-coil domains are required for this. The study provides evidence suggesting the existence of cytoskeletal-nucleoskeletal bridging complexes at the plant NE.
Journal of Cell Biology | 2012
Xiao Xian Zhou; Katja Graumann; David E. Evans; Iris Meier
SUN–KASH nuclear envelope bridges formed by WIP and SUN proteins are present in the plant branch of the tree of life but have functionally diverged from their opisthokont counterparts and are involved in nuclear morphology and RanGAP–nuclear envelope association.
Journal of Experimental Botany | 2011
Imogen Sparkes; Katja Graumann; A. Martinière; Jennifer Schoberer; Pengwei Wang; Anne Osterrieder
Since the production of Robert Hooke’s intricate diagrams of the microcomos in the mid-seventeenth century (Hooke, 1665), the use of the light microscope has undergone a technological revolution. Techniques and optics have greatly advanced, allowing us not only to describe the morphology of a specimen but also to probe the movement and dynamics of proteins and organelles within the cell. One of the most significant molecular and genetic advancements has been the isolation, engineering, and use of green fluorescent protein (GFP) to allow the visualization of protein fusions. In 2008, the impact GFP has had on cell biology was recognized by awarding the Nobel prize in Chemistry to the scientists involved in the pioneering initial discovery and development of its use as a fluorescent molecular tag. GFP was isolated from the jellyfish Aequorea victoria and has been expressed in a wide range of organisms including several species of plant. Subsequent engineering of GFP has resulted in multiple fluorophores with differing excitation/emission spectra allowing the visualization of two protein fusions (dual imaging) in the same cell (Shaner et al., 2007). There are numerous fluorescent protein fusions readily available to light up any organelle (Nelson et al., 2007; Geldner et al., 2009), and the generation of fusions can easily be produced using the available binary vectors (Karimi et al., 2007). This commentary briefly summarizes laser-based microscopy techniques which have expanded beyond the pure analysis of protein localization and steady-state levels, gene expression or organelle movement to allow the quantitative studies of protein and organelle dynamics. Bleach it, switch it: photobleaching, photoactivation, and photoconvertible proteins
Journal of Cell Biology | 2014
Xiao Zhou; Katja Graumann; Lennart Wirthmueller; Jonathan D. G. Jones; Iris Meier
A new homology search algorithm identifies novel KASH protein family members in Arabidopsis that act at the nuclear envelope in nuclear positioning and innate immunity.
Biology of the Cell | 2007
Katja Graumann; Sarah L. Irons; John Runions; David E. Evans
Background information. In a previous study, we showed that GFP (green fluorescent protein) fused to the N‐terminal 238 amino acids of the mammalian LBR (lamin B receptor) localized to the NE (nuclear envelope) when expressed in the plant Nicotiana tabacum. The protein was located in the NE during interphase and migrated with nuclear membranes during cell division. Targeting and retention of inner NE proteins requires several mechanisms: signals that direct movement through the nuclear pore complex, presence of a transmembrane domain or domains and retention by interaction with nuclear or nuclear‐membrane constituents.
Biochemical Journal | 2011
Katja Graumann; David E. Evans
Behaviour of the NE (nuclear envelope) during open mitosis has been explored extensively in metazoans, but lack of native markers has limited similar investigations in plants. In the present study, carried out using living synchronized tobacco BY-2 suspension cultures, the non-functional NE marker LBR (lamin B receptor)-GFP (green fluorescent protein) and two native, functional NE proteins, AtSUN1 [Arapidopsis thaliana SUN (Sad1/UNC84) 1] and AtSUN2, we provide evidence that the ER (endoplasmic reticulum)-retention theory for NE membranes is applicable in plants. We also observe two apparently unique plant features: location of the NE-membrane components in close proximity to chromatin throughout division, and spatially distinct reformation of the NE commencing at the chromatin surface facing the spindle poles and concluding at the surface facing the cell plate. Mobility of the proteins was investigated in the interphase NE, during NE breakdown and reformation, in the spindle membranes and the cell plate. A role for AtSUN2 in nuclear envelope breakdown is suggested.
PLOS ONE | 2014
Katja Graumann
Sad1/UNC84 (SUN) domain proteins are a highly conserved family of inner nuclear membrane localised proteins in eukaryotes. One of their main functions is as key components of nucleo-cytoskeletal bridging complexes, in which SUN proteins associate with nucleoskeletal elements. In metazoans these are the lamins, which form a supportive structural network termed the lamina. Plants lack sequence homologs of lamins but have a similar nucleoplasmic structural network to support the plant NE. Putative components of this plant lamina-like structure are Little Nuclei (LINC) proteins, which bear structural resemblance to lamins and fulfil similar functions. This work explores the associations between AtLINC1, AtSUN1 and AtSUN2. AtLINC1 is recruited to the NE by SUN proteins and is immobilised therein. This recruitment and the immobile properties are likely due to AtSUN1/2-AtLINC1 protein interactions occurring in planta. In addition, the SUN N-terminus appears to play an important role in mediating these interactions. The associations between AtLINC1 and plant SUN proteins are a first indicator of how the nucleoskeleton may be anchored to the nuclear membrane in plants. Building on the previous characterisation of Klarsicht/Anc1/Syne1 homology (KASH) like proteins in plants, this study advances the identification and characterisation of nucleo-cytoskeletal bridging complexes in plants.
Journal of Experimental Botany | 2014
Katja Graumann; Emmanuel Vanrobays; Sylvie Tutois; Aline V. Probst; David E. Evans; Christophe Tatout
SUN-domain proteins belong to a gene family including classical Cter-SUN and mid-SUN subfamilies differentiated by the position of the SUN domain within the protein. Although present in animal and plant species, mid-SUN proteins have so far remained poorly described. Here, we used a combination of genetics, yeast two-hybrid and in planta transient expression methods to better characterize the SUN family in Arabidopsis thaliana. First, we validated the mid-SUN protein subfamily as a monophyletic group conserved from yeast to plant. Arabidopsis Cter-SUN (AtSUN1 and AtSUN2) and mid-SUN (AtSUN3 and AtSUN4) proteins expressed as fluorescent protein fusions are membrane-associated and localize to the nuclear envelope (NE) and endoplasmic reticulum. However, only the Cter-SUN subfamily is enriched at the NE. We investigated interactions in and between members of the two subfamilies and identified the coiled-coil domain as necessary for mediating interactions. The functional significance of the mid-SUN subfamily was further confirmed in mutant plants as essential for early seed development and involved in nuclear morphology. Finally, we demonstrated that both subfamilies interact with the KASH domain of AtWIP1 and identified a new root-specific KASH-domain protein, AtTIK. AtTIK localizes to the NE and affects nuclear morphology. Our study indicates that Arabidopsis Cter-SUN and mid-SUN proteins are involved in a complex protein network at the nuclear membranes, reminiscent of the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex found in other kingdoms.
Plant Journal | 2015
Javier Varas; Katja Graumann; Kim Osman; Mónica Pradillo; David E. Evans; J. L. Santos; Susan J. Armstrong
The movement of chromosomes during meiosis involves location of their telomeres at the inner surface of the nuclear envelope. Sad1/UNC-84 (SUN) domain proteins are inner nuclear envelope proteins that are part of complexes linking cytoskeletal elements with the nucleoskeleton, connecting telomeres to the force-generating mechanism in the cytoplasm. These proteins play a conserved role in chromosome dynamics in eukaryotes. Homologues of SUN domain proteins have been identified in several plant species. In Arabidopsis thaliana, two proteins that interact with each other, named AtSUN1 and AtSUN2, have been identified. Immunolocalization using antibodies against AtSUN1 and AtSUN2 proteins revealed that they were associated with the nuclear envelope during meiotic prophase I. Analysis of the double mutant Atsun1-1 Atsun2-2 has revealed severe meiotic defects, namely a delay in the progression of meiosis, absence of full synapsis, the presence of unresolved interlock-like structures, and a reduction in the mean cell chiasma frequency. We propose that in Arabidopsis thaliana, overlapping functions of SUN1 and SUN2 ensure normal meiotic recombination and synapsis.
Annals of Botany | 2011
David E. Evans; M. Shvedunova; Katja Graumann
BACKGROUND Higher plants are, like animals, organisms in which successful completion of the cell cycle requires the breakdown and reformation of the nuclear envelope in a highly controlled manner. Interestingly, however, while the structures and processes appear similar, there are remarkable differences in protein composition and function between plants and animals. SCOPE Recent characterization of integral and associated components of the plant nuclear envelope has been instrumental in understanding its functions and behaviour. It is clear that protein interactions at the nuclear envelope are central to many processes in interphase and dividing cells and that the nuclear envelope has a key role in structural and regulatory events. CONCLUSION Dissecting the mechanisms of nuclear envelope breakdown and reformation in plants is necessary before a better understanding of the functions of nuclear envelope components during the cell cycle can be gained.