Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah L. McLaughlin is active.

Publication


Featured researches published by Sarah L. McLaughlin.


Oncogene | 2016

SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma

Sudjit Luanpitpong; Jingting Li; Amruta Manke; Kathleen M. Brundage; Emily Ellis; Sarah L. McLaughlin; Paweorn Angsutararux; Nawin Chanthra; Maria Voronkova; Yi Charlie Chen; Liying Wang; Pithi Chanvorachote; Ming Pei; Surapol Issaragrisil; Yon Rojanasakul

Cancer stem cells (CSCs) are a promising target for cancer therapy, particularly for metastatic lung cancers, but how CSCs are regulated is largely unknown. We identify two proteins, SLUG (encoded by SNAI2 gene) and SOX9, which are associated with advanced stage lung cancers and are implicated in the regulation of CSCs. Inhibition of either SLUG or SOX9 sufficiently inhibits CSCs in human lung cancer cells and attenuates experimental lung metastasis in a xenograft mouse model. Correlation between SLUG and SOX9 levels was observed remarkably, we therefore sought to explore their mechanistic relationship and regulation. SLUG, beyond its known function as an epithelial–mesenchymal transition transcription factor, was found to regulate SOX9 by controlling its stability via a post-translational modification process. SLUG interacts directly with SOX9 and prevents it from ubiquitin-mediated proteasomal degradation. SLUG expression and binding are necessary for SOX9 promotion of lung CSCs and metastasis in a mouse model. Together, our findings provide a novel mechanistic insight into the regulation of CSCs via SLUG-SOX9 regulatory axis, which represents a potential novel target for CSC therapy that may overcome cancer chemoresistance and relapse.


Cancer Research | 2015

KAP1 Promotes Proliferation and Metastatic Progression of Breast Cancer Cells

Joseph B. Addison; Colton Koontz; James H. Fugett; Chad J. Creighton; Dongquan Chen; Mark K. Farrugia; Renata R. Padon; Maria Voronkova; Sarah L. McLaughlin; Ryan H. Livengood; Chen-Chung Lin; J. Michael Ruppert; Elena N. Pugacheva; Alexey V. Ivanov

KAP1 (TRIM28) is a transcriptional regulator in embryonic development that controls stem cell self-renewal, chromatin organization, and the DNA damage response, acting as an essential corepressor for KRAB family zinc finger proteins (KRAB-ZNF). To gain insight into the function of this large gene family, we developed an antibody that recognizes the conserved zinc fingers linker region (ZnFL) in multiple KRAB-ZNF. Here, we report that the expression of many KRAB-ZNF along with active SUMOlyated KAP1 is elevated widely in human breast cancers. KAP1 silencing in breast cancer cells reduced proliferation and inhibited the growth and metastasis of tumor xenografts. Conversely, KAP1 overexpression stimulated cell proliferation and tumor growth. In cells where KAP1 was silenced, we identified multiple downregulated genes linked to tumor progression and metastasis, including EREG/epiregulin, PTGS2/COX2, MMP1, MMP2, and CD44, along with downregulation of multiple KRAB-ZNF proteins. KAP1-dependent stabilization of KRAB-ZNF required direct interactions with KAP1. Together, our results show that KAP1-mediated stimulation of multiple KRAB-ZNF contributes to the growth and metastasis of breast cancer.


Cancer Research | 2013

NEDD9 Depletion Destabilizes Aurora A Kinase and Heightens the Efficacy of Aurora A Inhibitors: Implications for Treatment of Metastatic Solid Tumors

Ryan J. Ice; Sarah L. McLaughlin; Ryan H. Livengood; Mark Culp; Erik R. Eddy; Alexey V. Ivanov; Elena N. Pugacheva

Aurora A kinase (AURKA) is overexpressed in 96% of human cancers and is considered an independent marker of poor prognosis. While the majority of tumors have elevated levels of AURKA protein, few have AURKA gene amplification, implying that posttranscriptional mechanisms regulating AURKA protein levels are significant. Here, we show that NEDD9, a known activator of AURKA, is directly involved in AURKA stability. Analysis of a comprehensive breast cancer tissue microarray revealed a tight correlation between the expression of both proteins, significantly corresponding with increased prognostic value. A decrease in AURKA, concomitant with increased ubiquitination and proteasome-dependent degradation, occurs due to depletion or knockout of NEDD9. Reexpression of wild-type NEDD9 was sufficient to rescue the observed phenomenon. Binding of NEDD9 to AURKA is critical for AURKA stabilization, as mutation of S296E was sufficient to disrupt binding and led to reduced AURKA protein levels. NEDD9 confers AURKA stability by limiting the binding of the cdh1-substrate recognition subunit of APC/C ubiquitin ligase to AURKA. Depletion of NEDD9 in tumor cells increases sensitivity to AURKA inhibitors. Combination therapy with NEDD9 short hairpin RNAs and AURKA inhibitors impairs tumor growth and distant metastasis in mice harboring xenografts of breast tumors. Collectively, our findings provide rationale for the use of AURKA inhibitors in treatment of metastatic tumors and predict the sensitivity of the patients to AURKA inhibitors based on NEDD9 expression.


Molecular and Cellular Biology | 2014

MicroRNAs 206 and 21 Cooperate To Promote RAS-Extracellular Signal-Regulated Kinase Signaling by Suppressing the Translation of RASA1 and SPRED1

Sriganesh B. Sharma; C.-C. Lin; Mark K. Farrugia; Sarah L. McLaughlin; E. J. Ellis; Kathleen M. Brundage; Mohamad Adham Salkeni; John Michael Ruppert

ABSTRACT Despite the low prevalence of activating point mutation of RAS or RAF genes, the RAS–extracellular signal-regulated kinase (ERK) pathway is implicated in breast cancer pathogenesis. Indeed, in triple-negative breast cancer (TNBC), there is recurrent genetic alteration of pathway components. Using short hairpin RNA (shRNA) methods, we observed that the zinc finger transcription factor Krüppel-like factor 4 (KLF4) can promote RAS-ERK signaling in TNBC cells. Endogenous KLF4 bound to the promoter regions and promoted the expression of two microRNAs (miRs), miR-206 and miR-21 (i.e., miR-206/21). Antisense-mediated knockdown (anti-miR) revealed that miR-206/21 coordinately promote RAS-ERK signaling and the corresponding cell phenotypes by inhibiting translation of the pathway suppressors RASA1 and SPRED1. In TNBC cells, including cells with mutation of RAS, the suppression of either RASA1 or SPRED1 increased the levels of GTP-bound, wild-type RAS and activated ERK 1/2. Unlike the control cells, treatment of RASA1- or SPRED1-suppressed cells with anti-miR-206/21 had little or no impact on the level of activated ERK 1/2 or on cell proliferation and failed to suppress tumor initiation. These results identify RASA1 and SPRED1 mRNAs as latent RAS-ERK pathway suppressors that can be upregulated in tumor cells by anti-miR treatment. Consequently, KLF4-regulated miRs are important for the maintenance of RAS-ERK pathway activity in TNBC cells.


Cancers | 2015

High-Fat, High-Calorie Diet Enhances Mammary Carcinogenesis and Local Inflammation in MMTV-PyMT Mouse Model of Breast Cancer

Sarah Cowen; Sarah L. McLaughlin; Gerald R. Hobbs; James E. Coad; Karen H. Martin; I. Olfert; Linda Vona-Davis

Epidemiological studies provide strong evidence that obesity and the associated adipose tissue inflammation are risk factors for breast cancer; however, the molecular mechanisms are poorly understood. We evaluated the effect of a high-fat/high-calorie diet on mammary carcinogenesis in the immunocompetent MMTV-PyMT murine model. Four-week old female mice (20/group) were randomized to receive either a high-fat (HF; 60% kcal as fat) or a low-fat (LF; 16% kcal) diet for eight weeks. Body weights were determined, and tumor volumes measured by ultrasound, each week. At necropsy, the tumors and abdominal visceral fat were weighed and plasma collected. The primary mammary tumors, adjacent mammary fat, and lungs were preserved for histological and immunohistochemical examination and quantification of infiltrating macrophages, crown-like structure (CLS) formation, and microvessel density. The body weight gains, visceral fat weights, the primary mammary tumor growth rates and terminal weights, were all significantly greater in the HF-fed mice. Adipose tissue inflammation in the HF group was indicated by hepatic steatosis, pronounced macrophage infiltration and CLS formation, and elevations in plasma monocyte chemoattractant protein-1 (MCP-1), leptin and proinflammatory cytokine concentrations. HF intake was also associated with higher tumor-associated microvascular density and the proangiogenic factor MCP-1. This study provides preclinical evidence in a spontaneous model of breast cancer that mammary adipose tissue inflammation induced by diet, enhances the recruitment of macrophages and increases tumor vascular density suggesting a role for obesity in creating a microenvironment favorable for angiogenesis in the progression of breast cancer.


Molecular Cancer Research | 2014

NEDD9 Regulates Actin Dynamics through Cortactin Deacetylation in an AURKA/HDAC6–Dependent Manner

Varvara K. Kozyreva; Sarah L. McLaughlin; Ryan H. Livengood; Robin Calkins; Laura C. Kelley; Anuradha Rajulapati; Ryan J. Ice; Matthew Smolkin; Scott A. Weed; Elena N. Pugacheva

The prometastatic protein NEDD9 (neural precursor cell expressed, developmentally downregulated 9) is highly expressed in many cancers and is required for mesenchymal individual cell migration and progression to the invasive stage. Nevertheless, the molecular mechanisms of NEDD9-driven migration and the downstream targets effecting metastasis are not well defined. In the current study, knockdown of NEDD9 in highly metastatic tumor cells drastically reduces their migratory capacity due to disruption of actin dynamics at the leading edge. Specifically, NEDD9 deficiency leads to a decrease in the persistence and stability of lamellipodial protrusions similar to knockdown of cortactin (CTTN). Mechanistically, it was shown that NEDD9 binds to and regulates acetylation of CTTN in an Aurora A kinase (AURKA)/HDAC6–dependent manner. The knockdown of NEDD9 or AURKA results in an increase in the amount of acetylated CTTN and a decrease in the binding of CTTN to F-actin. Overexpression of the deacetylation mimicking (9KR) mutant of CTTN is sufficient to restore actin dynamics at the leading edge and migration proficiency of the tumor cells. Inhibition of AURKA and HDAC6 activity by alisertib and Tubastatin A in xenograft models of breast cancer leads to a decrease in the number of pulmonary metastases. Collectively, these findings identify CTTN as the key downstream component of NEDD9-driven migration and metastatic phenotypes. Implications: This study provides a mechanistic platform for therapeutic interventions based on AURKA and HDAC6 inhibition for patients with metastatic breast cancer to prevent and/or eradicate metastases. Mol Cancer Res; 12(5); 681–93. ©2014 AACR.


Molecular Cancer Research | 2014

NEDD9 Depletion Leads to MMP14 Inactivation by TIMP2 and Prevents Invasion and Metastasis.

Sarah L. McLaughlin; Ryan J. Ice; Anuradha Rajulapati; Polina Y. Kozyulina; Ryan H. Livengood; Varvara K. Kozyreva; Yuriy V. Loskutov; Mark Culp; Scott A. Weed; Alexey V. Ivanov; Elena N. Pugacheva

The scaffolding protein NEDD9 is an established prometastatic marker in several cancers. Nevertheless, the molecular mechanisms of NEDD9-driven metastasis in cancers remain ill-defined. Here, using a comprehensive breast cancer tissue microarray, it was shown that increased levels of NEDD9 protein significantly correlated with the transition from carcinoma in situ to invasive carcinoma. Similarly, it was shown that NEDD9 overexpression is a hallmark of highly invasive breast cancer cells. Moreover, NEDD9 expression is crucial for the protease-dependent mesenchymal invasion of cancer cells at the primary site but not at the metastatic site. Depletion of NEDD9 is sufficient to suppress invasion of tumor cells in vitro and in vivo, leading to decreased circulating tumor cells and lung metastases in xenograft models. Mechanistically, NEDD9 localized to invasive pseudopods and was required for local matrix degradation. Depletion of NEDD9 impaired invasion of cancer cells through inactivation of membrane-bound matrix metalloproteinase MMP14 by excess TIMP2 on the cell surface. Inactivation of MMP14 is accompanied by reduced collagenolytic activity of soluble metalloproteinases MMP2 and MMP9. Reexpression of NEDD9 is sufficient to restore the activity of MMP14 and the invasive properties of breast cancer cells in vitro and in vivo. Collectively, these findings uncover critical steps in NEDD9-dependent invasion of breast cancer cells. Implications: This study provides a mechanistic basis for potential therapeutic interventions to prevent metastasis. Mol Cancer Res; 12(1); 69–81. ©2013 AACR.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Maternal Engineered Nanomaterial Exposure Disrupts Progeny Cardiac Function and Bioenergetics

Quincy A. Hathaway; Cody E. Nichols; Danielle L. Shepherd; Phoebe A. Stapleton; Sarah L. McLaughlin; Janelle C. Stricker; Stephanie L. Rellick; Mark V. Pinti; Alaeddin B. Abukabda; Carroll R. McBride; Jinghai Yi; Seth M. Stine; Timothy R. Nurkiewicz; John M. Hollander

Nanomaterial production is expanding as new industrial and consumer applications are introduced. Nevertheless, the impacts of exposure to these compounds are not fully realized. The present study was designed to determine whether gestational nano-sized titanium dioxide exposure impacts cardiac and metabolic function of developing progeny. Pregnant Sprague-Dawley rats were exposed to nano-aerosols (~10 mg/m3, 130- to 150-nm count median aerodynamic diameter) for 7-8 nonconsecutive days, beginning at gestational day 5-6 Physiological and bioenergetic effects on heart function and cardiomyocytes across three time points, fetal (gestational day 20), neonatal (4-10 days), and young adult (6-12 wk), were evaluated. Functional analysis utilizing echocardiography, speckle-tracking based strain, and cardiomyocyte contractility, coupled with mitochondrial energetics, revealed effects of nano-exposure. Maternal exposed progeny demonstrated a decrease in E- and A-wave velocities, with a 15% higher E-to-A ratio than controls. Myocytes isolated from exposed animals exhibited ~30% decrease in total contractility, departure velocity, and area of contraction. Bioenergetic analysis revealed a significant increase in proton leak across all ages, accompanied by decreases in metabolic function, including basal respiration, maximal respiration, and spare capacity. Finally, electron transport chain complex I and IV activities were negatively impacted in the exposed group, which may be linked to a metabolic shift. Molecular data suggest that an increase in fatty acid metabolism, uncoupling, and cellular stress proteins may be associated with functional deficits of the heart. In conclusion, gestational nano-exposure significantly impairs the functional capabilities of the heart through cardiomyocyte impairment, which is associated with mitochondrial dysfunction.NEW & NOTEWORTHY Cardiac function is evaluated, for the first time, in progeny following maternal nanomaterial inhalation. The findings indicate that exposure to nano-sized titanium dioxide (nano-TiO2) during gestation negatively impacts cardiac function and mitochondrial respiration and bioenergetics. We conclude that maternal nano-TiO2 inhalation contributes to adverse cardiovascular health effects, lasting into adulthood.


Journal of Molecular and Cellular Cardiology | 2016

Early detection of cardiac dysfunction in the type 1 diabetic heart using speckle-tracking based strain imaging.

Danielle L. Shepherd; Cody E. Nichols; Tara L. Croston; Sarah L. McLaughlin; Ashley Petrone; Sara E. Lewis; Dharendra Thapa; Dustin M. Long; Gregory M. Dick; John M. Hollander

Enhanced sensitivity in echocardiographic analyses may allow for early detection of changes in cardiac function beyond the detection limits of conventional echocardiographic analyses, particularly in a small animal model. The goal of this study was to compare conventional echocardiographic measurements and speckle-tracking based strain imaging analyses in a small animal model of type 1 diabetes mellitus. Conventional analyses revealed differences in ejection fraction, fractional shortening, cardiac output, and stroke volume in diabetic animals relative to controls at 6-weeks post-diabetic onset. In contrast, when assessing short- and long-axis speckle-tracking based strain analyses, diabetic mice showed changes in average systolic radial strain, radial strain rate, radial displacement, and radial velocity, as well as decreased circumferential and longitudinal strain rate, as early as 1-week post-diabetic onset and persisting throughout the diabetic study. Further, we performed regional analyses for the LV and found that the free wall region was affected in both the short- and long-axis when assessing radial dimension parameters. These changes began 1-week post-diabetic onset and remained throughout the progression of the disease. These findings demonstrate the use of speckle-tracking based strain as an approach to elucidate cardiac dysfunction from a global perspective, identifying left ventricular cardiac regions affected during the progression of type 1 diabetes mellitus earlier than contractile changes detected by conventional echocardiographic measurements.


Oncogenesis | 2015

Kruppel-like factor 4 signals through microRNA-206 to promote tumor initiation and cell survival

C-C Lin; Sriganesh B. Sharma; Mark K. Farrugia; Sarah L. McLaughlin; Ryan J. Ice; Yuriy V. Loskutov; Elena N. Pugacheva; Kathleen M. Brundage; Dongquan Chen; John Michael Ruppert

Tumor cell heterogeneity poses a major hurdle in the treatment of cancer. Mammary cancer stem-like cells (MaCSCs), or tumor-initiating cells, are highly tumorigenic sub-populations that have the potential to self-renew and to differentiate. These cells are clinically important, as they display therapeutic resistance and may contribute to treatment failure and recurrence, but the signaling axes relevant to the tumorigenic phenotype are poorly defined. The zinc-finger transcription factor Kruppel-like factor 4 (KLF4) is a pluripotency mediator that is enriched in MaCSCs. KLF4 promotes RAS-extracellular signal-regulated kinase pathway activity and tumor cell survival in triple-negative breast cancer (TNBC) cells. In this study, we found that both KLF4 and a downstream effector, microRNA-206 (miR-206), are selectively enriched in the MaCSC fractions of cultured human TNBC cell lines, as well as in the aldehyde dehydrogenase-high MaCSC sub-population of cells derived from xenografted human mammary carcinomas. The suppression of endogenous KLF4 or miR-206 activities abrogated cell survival and in vivo tumor initiation, despite having only subtle effects on MaCSC abundance. Using a combinatorial approach that included in silico as well as loss- and gain-of-function in vitro assays, we identified miR-206-mediated repression of the pro-apoptotic molecules programmed cell death 4 (PDCD4) and connexin 43 (CX43/GJA1). Depletion of either of these two miR-206-regulated transcripts promoted resistance to anoikis, a prominent feature of CSCs, but did not consistently alter MaCSC abundance. Consistent with increased levels of miR-206 in MaCSCs, the expression of both PDCD4 and CX43 was suppressed in these cells relative to control cells. These results identify miR-206 as an effector of KLF4-mediated prosurvival signaling in MaCSCs through repression of PDCD4 and CX43. Consequently, our study suggests that a pluripotency factor exerts prosurvival signaling in MaCSCs, and that antagonism of KLF4-miR-206 signaling may selectively target the MaCSC niche in TNBC.

Collaboration


Dive into the Sarah L. McLaughlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan J. Ice

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

Scott A. Weed

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Culp

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge