Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott A. Weed is active.

Publication


Featured researches published by Scott A. Weed.


Oncogene | 2001

Cortactin: coupling membrane dynamics to cortical actin assembly.

Scott A. Weed; J. Thomas Parsons

Exposure of cells to a variety of external signals causes rapid changes in plasma membrane morphology. Plasma membrane dynamics, including membrane ruffle and microspike formation, fusion or fission of intracellular vesicles, and the spatial organization of transmembrane proteins, is directly controlled by the dynamic reorganization of the underlying actin cytoskeleton. Two members of the Rho family of small GTPases, Cdc42 and Rac, have been well established as mediators of extracellular signaling events that impact cortical actin organization. Actin-based signaling through Cdc42 and Rac ultimately results in activation of the actin-related protein (Arp) 2/3 complex, which promotes the formation of branched actin networks. In addition, the activity of both receptor and non-receptor protein tyrosine kinases along with numerous actin binding proteins works in concert with Arp2/3-mediated actin polymerization in regulating the formation of dynamic cortical actin-associated structures. In this review we discuss the structure and role of the cortical actin binding protein cortactin in Rho GTPase and tyrosine kinase signaling events, with the emphasis on the roles cortactin plays in tyrosine phosphorylation-based signal transduction, regulating cortical actin assembly, transmembrane receptor organization and membrane dynamics. We also consider how aberrant regulation of cortactin levels contributes to tumor cell invasion and metastasis.


Cytoskeleton | 2008

Cortactin branches out: roles in regulating protrusive actin dynamics.

Amanda Gatesman Ammer; Scott A. Weed

Since its discovery in the early 1990s, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Src phosphorylation of cortactin enhances actin assembly

Shandiz Tehrani; Nenad Tomasevic; Scott A. Weed; Roman Sakowicz; John A. Cooper

Src kinase mediates growth factor signaling and causes oncogenic transformation, which includes dramatic changes in the actin cytoskeleton, cell shape, and motility. Cortactin was discovered as a substrate for Src. How phosphorylation of cortactin can enhance actin assembly is unknown. Here, using an actin assembly system reconstituted from purified components, we demonstrate for the first time a biochemical mechanism by which Src phosphorylation of cortactin affects actin assembly. The adaptor Nck is an important component of the system, linking phosphorylated cortactin with neuronal WASp (N-WASp) and WASp-interacting protein (WIP) to activate Arp2/3 complex.


Cancer Research | 2006

Cortactin overexpression regulates actin-related protein 2/3 complex activity, motility, and invasion in carcinomas with chromosome 11q13 amplification.

Brian L. Rothschild; Ann H. Shim; Amanda Gatesman Ammer; Laura C. Kelley; Kimberly B. Irby; Julie A. Head; Lin Chen; Marileila Varella-Garcia; Peter G. Sacks; Barbara Frederick; David Raben; Scott A. Weed

Carcinoma cell motility and invasion are prerequisites for tumor cell metastasis, which requires regulation of the actin cytoskeleton. Cortactin is an actin-related protein 2/3 (Arp2/3) complex-activating and filamentous (F)-actin-binding protein that is implicated in tumor cell motility and metastasis, partially by its ability to become tyrosine phosphorylated. Cortactin is encoded by the CTTN gene and maps to chromosome 11q13, a region amplified in many carcinomas, including head and neck squamous cell carcinoma (HNSCC). CTTN gene amplification is associated with lymph node metastasis and poor patient outcome, and cortactin overexpression enhances motility in tumor cells lacking 11q13 amplification. However, a direct link between increased motility and invasion has not been reported in tumor cells with chromosome 11q13 amplification and cortactin overexpression. In this study, we have examined the relationship between CTTN amplification and tumor cell motility in HNSCC. In 11 of 39 (28%) HNSCC cases, cortactin overexpression determined by immunohistochemistry correlates with lymph node metastasis and CTTN gene amplification. HNSCC cells containing cortactin gene amplification and protein overexpression display increased binding and activation of Arp2/3 complex, and were more motile and invasive than HNSCC cells lacking CTTN amplification. Down-regulation of cortactin expression in CTTN-amplified HNSCC cells by small interfering RNA impairs HNSCC motility and invasion. Treatment of HNSCC cells with the epidermal growth factor receptor inhibitor gefitinib inhibits HNSCC motility and down-regulates cortactin tyrosine phosphorylation. These data suggest that cortactin may be a valid prognostic and therapeutic marker for invasive and metastatic HNSCC and other carcinomas with 11q13 amplification.


Molecular and Cellular Biology | 2004

Protein Kinase Cα Activates c-Src and Induces Podosome Formation via AFAP-110

Amanda Gatesman; Valerie Walker; Joseph M. Baisden; Scott A. Weed; Daniel C. Flynn

ABSTRACT We report that the actin filament-associated protein AFAP-110 is required to mediate protein kinase Cα (PKCα) activation of the nonreceptor tyrosine kinase c-Src and the subsequent formation of podosomes. Immunofluorescence analysis demonstrated that activation of PKCα by phorbol 12-myristate 13-acetate (PMA), or ectopic expression of constitutively activated PKCα, directs AFAP-110 to colocalize with and bind to the c-Src SH3 domain, resulting in activation of the tyrosine kinase. Activation of c-Src then directs the formation of podosomes, which contain cortactin, AFAP-110, actin, and c-Src. In a cell line (CaOV3) that has very little or no detectable AFAP-110, PMA treatment was unable to activate c-Src or effect podosome formation. Ectopic expression of AFAP-110 in CaOV3 cells rescued PKCα-mediated activation of c-Src and elevated tyrosine phosphorylation levels and subsequent formation of podosomes. Neither expression of activated PKCα nor treatment with PMA was able to induce these changes in CAOV3 cells expressing mutant forms of AFAP-110 that are unable to bind to, or colocalize with, c-Src. We hypothesize that one major function of AFAP-110 is to relay signals from PKCα that direct the activation of c-Src and the formation of podosomes.


PLOS ONE | 2010

Cortactin Phosphorylated by ERK1/2 Localizes to Sites of Dynamic Actin Regulation and Is Required for Carcinoma Lamellipodia Persistence

Laura C. Kelley; Karen E. Hayes; Amanda Gatesman Ammer; Karen H. Martin; Scott A. Weed

Background Tumor cell motility and invasion is governed by dynamic regulation of the cortical actin cytoskeleton. The actin-binding protein cortactin is commonly upregulated in multiple cancer types and is associated with increased cell migration. Cortactin regulates actin nucleation through the actin related protein (Arp)2/3 complex and stabilizes the cortical actin cytoskeleton. Cortactin is regulated by multiple phosphorylation events, including phosphorylation of S405 and S418 by extracellular regulated kinases (ERK)1/2. ERK1/2 phosphorylation of cortactin has emerged as an important positive regulatory modification, enabling cortactin to bind and activate the Arp2/3 regulator neuronal Wiskott-Aldrich syndrome protein (N-WASp), promoting actin polymerization and enhancing tumor cell movement. Methodology/Principal Findings In this report we have developed phosphorylation-specific antibodies against phosphorylated cortactin S405 and S418 to analyze the subcellular localization of this cortactin form in tumor cells and patient samples by microscopy. We evaluated the interplay between cortactin S405 and S418 phosphorylation with cortactin tyrosine phosphorylation in regulating cortactin conformational forms by Western blotting. Cortactin is simultaneously phosphorylated at S405/418 and Y421 in tumor cells, and through the use of point mutant constructs we determined that serine and tyrosine phosphorylation events lack any co-dependency. Expression of S405/418 phosphorylation-null constructs impaired carcinoma motility and adhesion, and also inhibited lamellipodia persistence monitored by live cell imaging. Conclusions/Significance Cortactin phosphorylated at S405/418 is localized to sites of dynamic actin assembly in tumor cells. Concurrent phosphorylation of cortactin by ERK1/2 and tyrosine kinases enables cells with the ability to regulate actin dynamics through N-WASp and other effector proteins by synchronizing upstream regulatory pathways, confirming cortactin as an important integration point in actin-based signal transduction. Reduced lamellipodia persistence in cells with S405/418A expression identifies an essential motility-based process reliant on ERK1/2 signaling, providing additional understanding as to how this pathway impacts tumor cell migration.


Journal of Cancer Science & Therapy | 2009

Saracatinib Impairs Head and Neck Squamous Cell Carcinoma Invasion by Disrupting Invadopodia Function.

Amanda Gatesman Ammer; Laura C. Kelley; Karen E. Hayes; Jason V. Evans; Lesly Ann Lopez-Skinner; Karen H. Martin; Barbara Frederick; Brian L. Rothschild; David Raben; Paul Elvin; Tim P. Green; Scott A. Weed

Elevated Src kinase activity is linked to the progression of solid tumors, including head and neck squamous cell carcinoma (HNSCC). Src regulates HNSCC proliferation and tumor invasion, with the Src-targeted small molecule inhibitor saracatinib displaying potent anti-invasive effects in preclinical studies. However, the pro-invasive cellular mechanism(s) perturbed by saracatinib are unclear. The anti-proliferative and anti-invasive effects of saracatinib on HNSCC cell lines were therefore investigated in pre-clinical cell and mouse model systems. Saracatinib treatment inhibited growth, cell cycle progression and transwell Matrigel invasion in HNSCC cell lines. Dose-dependent decreases in Src activation and phosphorylation of the invasion-associated substrates focal adhesion kinase, p130 CAS and cortactin were also observed. While saracatinib did not significantly impact HNSCC tumor growth in a mouse orthotopic model of tongue squamous cell carcinoma, impaired perineural invasion and cervical lymph node metastasis was observed. Accordingly, saracatinib treatment displayed a dose-dependent inhibitory effect on invadopodia formation, extracellular matrix degradation and matrix metalloprotease 9 activation. These results suggest that inhibition of Src kinase by saracatinib impairs the pro-invasive activity of HNSCC by inhibiting Src substrate phosphorylation important for invadopodia formation and associated matrix metalloprotease activity.


Journal of Cell Science | 2010

Oncogenic Src requires a wild-type counterpart to regulate invadopodia maturation

Laura C. Kelley; Amanda Gatesman Ammer; Karen E. Hayes; Karen H. Martin; Kazuya Machida; Lin Jia; Bruce J. Mayer; Scott A. Weed

The proto-oncogene Src tyrosine kinase (Src) is overexpressed in human cancers and is currently a target of anti-invasive therapies. Activation of Src is an essential catalyst of invadopodia production. Invadopodia are cellular structures that mediate extracellular matrix (ECM) proteolysis, allowing invasive cell types to breach confining tissue barriers. Invadopodia assembly and maturation is a multistep process, first requiring the targeting of actin-associated proteins to form pre-invadopodia, which subsequently mature by recruitment and activation of matrix metalloproteases (MMPs) that facilitate ECM degradation. We demonstrate that active, oncogenic Src alleles require the presence of a wild-type counterpart to induce ECM degradation at invadopodia sites. In addition, we identify the phosphorylation of the invadopodia regulatory protein cortactin as an important mediator of invadopodia maturation downstream of wild-type Src. Distinct phosphotyrosine-based protein-binding profiles in cells forming pre-invadopodia and mature invadopodia were identified by SH2-domain array analysis. These results indicate that although elevated Src kinase activity is required to target actin-associated proteins to pre-invadopodia, regulated Src activity is required for invadopodia maturation and matrix degradation activity. Our findings describe a previously unappreciated role for proto-oncogenic Src in enabling the invasive activity of constitutively active Src alleles.


Pharmacotherapy | 2012

Effects of tobacco smoking and nicotine on cancer treatment.

William P. Petros; Islam Younis; James N. Ford; Scott A. Weed

A substantial number of the worlds population continues to smoke tobacco, even in the setting of a cancer diagnosis. Studies have shown that patients with cancer who have a history of smoking have a worse prognosis than nonsmokers. Modulation of several physiologic processes involved in drug disposition has been associated with long‐term exposure to tobacco smoke. The most common of these processes can be categorized into the effects of smoking on cytochrome P450–mediated metabolism, glucuronidation, and protein binding. Perturbation in the pharmacokinetics of anticancer drugs could result in clinically significant consequences, as these drugs are among the most toxic, but potentially beneficial, pharmaceuticals prescribed. Unfortunately, the effect of tobacco smoking on drug disposition has been explored for only a few marketed anticancer drugs; thus, little prescribing information is available to guide clinicians on the vast majority of these agents. The carcinogenic properties of several compounds found in tobacco smoke have been well studied; however, relatively little attention has been given to the effects of nicotine itself on cancer growth. Data that identify nicotines effect on cancer cell apoptosis, tumor angiogenesis, invasion, and metastasis are emerging. The implications of these data are still unclear but may lead to important questions regarding approaches to smoking cessation in patients with cancer.


Journal of Cell Science | 2008

Phosphorylation of AFAP-110 affects podosome lifespan in A7r5 cells

Andrea Dorfleutner; Young Jin Cho; Deanne Vincent; Jess M. Cunnick; Hong Lin; Scott A. Weed; Christian Stehlik; Daniel C. Flynn

AFAP-110 is an actin-binding and -crosslinking protein that is enriched in Src and phorbol ester (PE)-induced podosomes. In vascular smooth muscle cells endogenous AFAP-110 localized to actin stress fibers and, in response to treatment with phorbol-12,13-dibutyrate (PDBu), to actin-rich podosomes. Since PEs can activate PKCα, AFAP-110 is a substrate of PKCα and PKCα–AFAP-110 interactions direct podosome formation, we sought to identify a PE-induced phosphorylation site in AFAP-110 and determine whether phosphorylation is linked to the formation of podosomes. Mutational analysis revealed Ser277 of AFAP-110 to be phosphorylated in PE-treated cells. The use of a newly generated, phospho-specific antibody directed against phosphorylated Ser277 revealed that PKCα activation is associated with PE-induced AFAP-110 phosphorylation. In PDBu-treated A7r5 rat vascular smooth muscle cells, immunolabeling using the phospho-specific antibody showed that phospho-AFAP-110 is primarily associated with actin in podosomes. Although mutation of Ser at position 277 to Ala (AFAP-110S277A) did not alter the ability of AFAP-110 to localize to podosomes, overexpression of AFAP-110S277A in treated and untreated A7r5 cells resulted in an increased number of cells that display podosomes. Video microscopy demonstrated that AFAP-110S277A expression correlates with an increased number of long-lived podosomes. Therefore, we hypothesize that AFAP-110 phosphorylation and/or dephosphorylation is involved in the regulation of podosome stability and lifespan.

Collaboration


Dive into the Scott A. Weed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen E. Hayes

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

Elyse L. Walk

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan J. Ice

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge