Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah M. Carpanini is active.

Publication


Featured researches published by Sarah M. Carpanini.


Human Mutation | 2013

Mutation Spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and Genotype–Phenotype Correlations in Warburg Micro Syndrome and Martsolf Syndrome

Mark T. Handley; Deborah J. Morris-Rosendahl; Stephen Brown; Fiona Macdonald; Carol Hardy; Danai Bem; Sarah M. Carpanini; Guntram Borck; Loreto Martorell; Claudia Izzi; Francesca Faravelli; Patrizia Accorsi; Lorenzo Pinelli; Lina Basel-Vanagaite; Gabriela Peretz; Ghada M.H. Abdel-Salam; Maha S. Zaki; Anna Jansen; David Mowat; Ian A. Glass; Helen Stewart; Grazia M.S. Mancini; Damien Lederer; Tony Roscioli; Fabienne Giuliano; Astrid S. Plomp; Arndt Rolfs; John M. Graham; Eva Seemanova; Pilar Poo

Warburg Micro syndrome and Martsolf syndrome (MS) are heterogeneous autosomal‐recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Causative biallelic germline mutations have been identified in RAB3GAP1, RAB3GAP2, or RAB18, each of which encode proteins involved in membrane trafficking. This report provides an up to date overview of all known disease variants identified in 29 previously published families and 52 new families. One‐hundred and forty‐four Micro and nine Martsolf families were investigated, identifying mutations in RAB3GAP1 in 41% of cases, mutations in RAB3GAP2 in 7% of cases, and mutations in RAB18 in 5% of cases. These are listed in Leiden Open source Variation Databases, which was created by us for all three genes. Genotype–phenotype correlations for these genes have now established that the clinical phenotypes in Micro syndrome and MS represent a phenotypic continuum related to the nature and severity of the mutations present in the disease genes, with more deleterious mutations causing Micro syndrome and milder mutations causing MS. RAB18 has not yet been linked to the RAB3 pathways, but mutations in all three genes cause an indistinguishable phenotype, making it likely that there is some overlap. There is considerable genetic heterogeneity for these disorders and further gene identification will help delineate these pathways.


Journal of Cell Biology | 2014

Rab18 and a Rab18 GEF complex are required for normal ER structure

Andreas Gerondopoulos; Ricardo Nunes Bastos; Shin-ichiro Yoshimura; Rachel Anderson; Sarah M. Carpanini; Irene A. Aligianis; Mark T. Handley; Francis A. Barr

The Rab3GAP complex that is mutated in the neurological disorder Micro syndrome is a guanine nucleotide exchange factor that promotes Rab18 localization to the endoplasmic reticulum.


American Journal of Human Genetics | 2013

Loss-of-Function Mutations in TBC1D20 Cause Cataracts and Male Infertility in blind sterile Mice and Warburg Micro Syndrome in Humans

Ryan Liegel; Mark T. Handley; Adam Ronchetti; Stephen Brown; Lars Langemeyer; Andrea Linford; Bo Chang; Deborah J. Morris-Rosendahl; Sarah M. Carpanini; Renata Posmyk; Verity Harthill; Eamonn Sheridan; Ghada M.H. Abdel-Salam; Paulien A. Terhal; Francesca Faravelli; Patrizia Accorsi; Lucio Giordano; Lorenzo Pinelli; Britta Hartmann; Allison D. Ebert; Francis A. Barr; Irene A. Aligianis; Duska J. Sidjanin

blind sterile (bs) is a spontaneous autosomal-recessive mouse mutation discovered more than 30 years ago. Phenotypically, bs mice exhibit nuclear cataracts and male infertility; genetic analyses assigned the bs locus to mouse chromosome 2. In this study, we first positionally cloned the bs locus and identified a putative causative mutation in the Tbc1d20 gene. Functional analysis established the mouse TBC1D20 protein as a GTPase-activating protein (GAP) for RAB1 and RAB2, and bs as a TBC1D20 loss-of-function mutation. Evaluation of bs mouse embryonic fibroblasts (mEFs) identified enlarged Golgi morphology and aberrant lipid droplet (LD) formation. Based on the function of TBC1D20 as a RABGAP and the bs cataract and testicular phenotypes, we hypothesized that mutations in TBC1D20 may contribute to Warburg micro syndrome (WARBM); WARBM constitutes a spectrum of disorders characterized by eye, brain, and endocrine abnormalities caused by mutations in RAB3GAP1, RAB3GAP2, and RAB18. Sequence analysis of a cohort of 77 families affected by WARBM identified five distinct TBC1D20 loss-of-function mutations, thereby establishing these mutations as causative of WARBM. Evaluation of human fibroblasts deficient in TBC1D20 function identified aberrant LDs similar to those identified in the bs mEFs. Additionally, our results show that human fibroblasts deficient in RAB18 and RAB3GAP1 function also exhibit aberrant LD formation. These findings collectively indicate that a defect in LD formation/metabolism may be a common cellular abnormality associated with WARBM, although it remains unclear whether abnormalities in LD metabolism are contributing to WARBM disease pathology.


Disease Models & Mechanisms | 2014

A novel mouse model of Warburg Micro syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton

Sarah M. Carpanini; Lisa McKie; Derek Thomson; Ann K. Wright; Sarah L. Gordon; Sarah L. Roche; Mark T. Handley; Harris Morrison; David Brownstein; Thomas M. Wishart; Michael A. Cousin; Thomas H. Gillingwater; Irene A. Aligianis; Ian J. Jackson

Mutations in RAB18 have been shown to cause the heterogeneous autosomal recessive disorder Warburg Micro syndrome (WARBM). Individuals with WARBM present with a range of clinical symptoms, including ocular and neurological abnormalities. However, the underlying cellular and molecular pathogenesis of the disorder remains unclear, largely owing to the lack of any robust animal models that phenocopy both the ocular and neurological features of the disease. We report here the generation and characterisation of a novel Rab18-mutant mouse model of WARBM. Rab18-mutant mice are viable and fertile. They present with congenital nuclear cataracts and atonic pupils, recapitulating the characteristic ocular features that are associated with WARBM. Additionally, Rab18-mutant cells exhibit an increase in lipid droplet size following treatment with oleic acid. Lipid droplet abnormalities are a characteristic feature of cells taken from WARBM individuals, as well as cells taken from individuals with other neurodegenerative conditions. Neurological dysfunction is also apparent in Rab18-mutant mice, including progressive weakness of the hind limbs. We show that the neurological defects are, most likely, not caused by gross perturbations in synaptic vesicle recycling in the central or peripheral nervous system. Rather, loss of Rab18 is associated with widespread disruption of the neuronal cytoskeleton, including abnormal accumulations of neurofilament and microtubule proteins in synaptic terminals, and gross disorganisation of the cytoskeleton in peripheral nerves. Global proteomic profiling of peripheral nerves in Rab18-mutant mice reveals significant alterations in several core molecular pathways that regulate cytoskeletal dynamics in neurons. The apparent similarities between the WARBM phenotype and the phenotype that we describe here indicate that the Rab18-mutant mouse provides an important platform for investigation of the disease pathogenesis and therapeutic interventions.


Open Biology | 2015

Warburg Micro syndrome is caused by RAB18 deficiency or dysregulation

Mark T. Handley; Sarah M. Carpanini; Girish Mali; Duska J. Sidjanin; Irene A. Aligianis; Ian J. Jackson; David Fitzpatrick

RAB18, RAB3GAP1, RAB3GAP2 and TBC1D20 are each mutated in Warburg Micro syndrome, a rare autosomal recessive multisystem disorder. RAB3GAP1 and RAB3GAP2 form a binary ‘RAB3GAP’ complex that functions as a guanine-nucleotide exchange factor (GEF) for RAB18, whereas TBC1D20 shows modest RAB18 GTPase-activating (GAP) activity in vitro. Here, we show that in the absence of functional RAB3GAP or TBC1D20, the level, localization and dynamics of cellular RAB18 is altered. In cell lines where TBC1D20 is absent from the endoplasmic reticulum (ER), RAB18 becomes more stably ER-associated and less cytosolic than in control cells. These data suggest that RAB18 is a physiological substrate of TBC1D20 and contribute to a model in which a Rab-GAP can be essential for the activity of a target Rab. Together with previous reports, this indicates that Warburg Micro syndrome can be caused directly by loss of RAB18, or indirectly through loss of RAB18 regulators RAB3GAP or TBC1D20.


eLife | 2017

Pro-death NMDA receptor signaling is promoted by the GluN2B C-terminus independently of Dapk1

Jamie McQueen; Tomás J. Ryan; Sean McKay; Katie Marwick; Paul Baxter; Sarah M. Carpanini; Thomas M. Wishart; Thomas H. Gillingwater; Jean Manson; David J. A. Wyllie; Seth G. N. Grant; Barry W. McColl; Noboru H. Komiyama; Giles E. Hardingham

Aberrant NMDA receptor (NMDAR) activity contributes to several neurological disorders, but direct antagonism is poorly tolerated therapeutically. The GluN2B cytoplasmic C-terminal domain (CTD) represents an alternative therapeutic target since it potentiates excitotoxic signaling. The key GluN2B CTD-centred event in excitotoxicity is proposed to involve its phosphorylation at Ser-1303 by Dapk1, that is blocked by a neuroprotective cell-permeable peptide mimetic of the region. Contrary to this model, we find that excitotoxicity can proceed without increased Ser-1303 phosphorylation, and is unaffected by Dapk1 deficiency in vitro or following ischemia in vivo. Pharmacological analysis of the aforementioned neuroprotective peptide revealed that it acts in a sequence-independent manner as an open-channel NMDAR antagonist at or near the Mg2+ site, due to its high net positive charge. Thus, GluN2B-driven excitotoxic signaling can proceed independently of Dapk1 or altered Ser-1303 phosphorylation.


Journal of Cell Science | 2017

Sideroflexin 3 is an α-synuclein-dependent mitochondrial protein that regulates synaptic morphology

Inês S. Amorim; Laura C. Graham; Roderick N. Carter; Nicholas M. Morton; Fella Hammachi; Tilo Kunath; Giuseppa Pennetta; Sarah M. Carpanini; Jean Manson; Douglas J. Lamont; Thomas M. Wishart; Thomas H. Gillingwater

ABSTRACT α-Synuclein plays a central role in Parkinsons disease, where it contributes to the vulnerability of synapses to degeneration. However, the downstream mechanisms through which α-synuclein controls synaptic stability and degeneration are not fully understood. Here, comparative proteomics on synapses isolated from α-synuclein−/− mouse brain identified mitochondrial proteins as primary targets of α-synuclein, revealing 37 mitochondrial proteins not previously linked to α-synuclein or neurodegeneration pathways. Of these, sideroflexin 3 (SFXN3) was found to be a mitochondrial protein localized to the inner mitochondrial membrane. Loss of SFXN3 did not disturb mitochondrial electron transport chain function in mouse synapses, suggesting that its function in mitochondria is likely to be independent of canonical bioenergetic pathways. In contrast, experimental manipulation of SFXN3 levels disrupted synaptic morphology at the Drosophila neuromuscular junction. These results provide novel insights into α-synuclein-dependent pathways, highlighting an important influence on mitochondrial proteins at the synapse, including SFXN3. We also identify SFXN3 as a new mitochondrial protein capable of regulating synaptic morphology in vivo. Summary: Comparative proteomics revealed that mitochondrial proteins are a major target for α-synuclein. Sideroflexin 3 (SFXN3) was identified as one α-synuclein-dependent mitochondrial protein capable of altering synaptic morphology in vivo.


Journal of Anatomy | 2016

Quantitative imaging of tissue sections using infrared scanning technology

Samantha L. Eaton; Elizabeth M. Cumyn; Declan King; Rachel A. Kline; Sarah M. Carpanini; Jorge Del-Pozo; Rona Barron; Thomas M. Wishart

Quantification of immunohistochemically (IHC) labelled tissue sections typically yields semi‐quantitative results. Visualising infrared (IR) ‘tags’, with an appropriate scanner, provides an alternative system where the linear nature of the IR fluorophore emittance enables realistic quantitative fluorescence IHC (QFIHC). Importantly, this new technology enables entire tissue sections to be scanned, allowing accurate area and protein abundance measurements to be calculated from rapidly acquired images. Here, some of the potential benefits of using IR‐based tissue imaging are examined, and the following are demonstrated. Firstly, image capture and analysis using IR‐based scanning technology yields comparable area‐based quantification to those obtained from a modern high‐resolution digital slide scanner. Secondly, IR‐based dual target visualisation and expression‐based quantification is rapid and simple. Thirdly, IR‐based relative protein abundance QIHC measurements are an accurate reflection of tissue sample protein abundance, as demonstrated by comparison with quantitative fluorescent Western blotting data. In summary, it is proposed that IR‐based QFIHC provides an alternative method of rapid whole‐tissue section low‐resolution imaging for the production of reliable and accurate quantitative data.


Neurogenetics | 2017

Analysis of gene expression in the nervous system identifies key genes and novel candidates for health and disease

Sarah M. Carpanini; Thomas M. Wishart; Thomas H. Gillingwater; Jean Manson; Kim M. Summers

The incidence of neurodegenerative diseases in the developed world has risen over the last century, concomitant with an increase in average human lifespan. A major challenge is therefore to identify genes that control neuronal health and viability with a view to enhancing neuronal health during ageing and reducing the burden of neurodegeneration. Analysis of gene expression data has recently been used to infer gene functions for a range of tissues from co-expression networks. We have now applied this approach to transcriptomic datasets from the mammalian nervous system available in the public domain. We have defined the genes critical for influencing neuronal health and disease in different neurological cell types and brain regions. The functional contribution of genes in each co-expression cluster was validated using human disease and knockout mouse phenotypes, pathways and gene ontology term annotation. Additionally a number of poorly annotated genes were implicated by this approach in nervous system function. Exploiting gene expression data available in the public domain allowed us to validate key nervous system genes and, importantly, to identify additional genes with minimal functional annotation but with the same expression pattern. These genes are thus novel candidates for a role in neurological health and disease and could now be further investigated to confirm their function and regulation during ageing and neurodegeneration.


Prion | 2016

Assessing the disease-modifying role of TREM2 in a prion model of neurodegeneration

Jean Manson; Alessio Alfieri; Sarah M. Carpanini; Aileen Boyle; Pedro Piccardo; Barry W. McColl

Until now, the 3-dimensional structure of infectious mammalian prions and how this differs from non-infectious amyloid fibrils remained unknown. Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity. One of the major challenges has been the production of highly homogeneous material of demonstrable high specific infectivity to allow direct correlation of particle structure with infectivity. We have recently developed novel methods to obtain exceptionally pure preparations of prions from prion-infected murine brain and have shown that pathogenic PrP in these high-titer preparations is assembled into rod-like assemblies (Wenborn et al. 2015. Sci. Rep. 10062). Our preparations contain very high titres of infectious prions which faithfully transmit prion strain-specific phenotypes when inoculated into mice making them eminently suitable for detailed structural analysis. We are now undertaking structural characterization of prion assemblies and comparing these to the structure of non-infectious PrP fibrils generated from recombinant PrP

Collaboration


Dive into the Sarah M. Carpanini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Manson

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa McKie

Western General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge