Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah M. Nikkel is active.

Publication


Featured researches published by Sarah M. Nikkel.


Nature Genetics | 2012

De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes

Jean-Baptiste Rivière; Ghayda M. Mirzaa; Brian J. O'Roak; Margaret Beddaoui; Diana Alcantara; Robert Conway; Judith St-Onge; Jeremy Schwartzentruber; Karen W. Gripp; Sarah M. Nikkel; Christopher T. Sullivan; Thomas R Ward; Hailly Butler; Nancy Kramer; Beate Albrecht; Christine M. Armour; Linlea Armstrong; Oana Caluseriu; Cheryl Cytrynbaum; Beth A. Drolet; A. Micheil Innes; Julie Lauzon; Angela E. Lin; Grazia M.S. Mancini; Wendy S. Meschino; James Reggin; Anand Saggar; Tally Lerman-Sagie; Gökhan Uyanik; Rosanna Weksberg

Megalencephaly-capillary malformation (MCAP) and megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndromes are sporadic overgrowth disorders associated with markedly enlarged brain size and other recognizable features. We performed exome sequencing in 3 families with MCAP or MPPH, and our initial observations were confirmed in exomes from 7 individuals with MCAP and 174 control individuals, as well as in 40 additional subjects with megalencephaly, using a combination of Sanger sequencing, restriction enzyme assays and targeted deep sequencing. We identified de novo germline or postzygotic mutations in three core components of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway. These include 2 mutations in AKT3, 1 recurrent mutation in PIK3R2 in 11 unrelated families with MPPH and 15 mostly postzygotic mutations in PIK3CA in 23 individuals with MCAP and 1 with MPPH. Our data highlight the central role of PI3K-AKT signaling in vascular, limb and brain development and emphasize the power of massively parallel sequencing in a challenging context of phenotypic and genetic heterogeneity combined with postzygotic mosaicism.


Journal of Child Psychology and Psychiatry | 2009

Executive Function Deficits in Children with Fetal Alcohol Spectrum Disorders (FASD) Measured Using the Cambridge Neuropsychological Tests Automated Battery (CANTAB).

Courtney R. Green; A.M. Mihic; Sarah M. Nikkel; B.C. Stade; Carmen Rasmussen; Douglas P. Munoz; James N. Reynolds

BACKGROUND Chronic prenatal alcohol exposure causes a spectrum of deleterious effects in offspring, collectively termed fetal alcohol spectrum disorders (FASD), and deficits in executive function are prevalent in FASD. The goal of this research was to test the hypothesis that children with FASD exhibit performance deficits in tasks that assess attention, planning and spatial working memory. METHODS Subjects (8-15 years male and female children) with a diagnosis of fetal alcohol syndrome (FAS), partial FAS (pFAS), or alcohol-related neurodevelopmental disorder (ARND), and age- and sex-matched controls, completed four tasks selected from the Cambridge Neuropsychological Tests Automated Battery (CANTAB). RESULTS Compared with age-matched control children (n = 92), subjects with FASD (n = 89) exhibited longer reaction and decision times (effect size range; Cohens d = .51 to .73), suggesting deficits in attention. Children with FASD demonstrated deficits in planning and spatial working memory that became more pronounced when task difficulty increased. The largest effect size in this study population (Cohens d = 1.1) occurred in the spatial working memory task. Only one outcome measure revealed differences across the diagnostic subgroups, although all groups were different from control. CONCLUSION This study demonstrates that deficits in multiple executive function domains, including set shifting, planning and strategy use, attention and spatial working memory, can be assessed in children with FASD using an easy to administer, brief battery of computer-based neuropsychological tasks. The tasks appear to be equally sensitive for brain injury resulting from prenatal exposure to alcohol, regardless of the presence of facial dysmorphology.


American Journal of Medical Genetics Part A | 2005

Further delineation of Kabuki syndrome in 48 well-defined new individuals†

Linlea Armstrong; Azza Abd El Moneim; Kirk Aleck; David J. Aughton; Clarisse Baumann; Stephen R. Braddock; Gabriele Gillessen-Kaesbach; John M. Graham; Theresa A. Grebe; Karen W. Gripp; Bryan D. Hall; Raoul C. M. Hennekam; Alasdair G. W. Hunter; Kim M. Keppler-Noreuil; Didier Lacombe; Angela E. Lin; Jeffrey E. Ming; Nancy Mizue Kokitsu-Nakata; Sarah M. Nikkel; Nicole Philip; Annick Raas-Rothschild; Annemarie Sommer; Alain Verloes; Claudia Walter; Dagmar Wieczorek; Marc S. Williams; Elaine H. Zackai; Judith Allanson

Kabuki syndrome is a multiple congenital anomaly/mental retardation syndrome. This study of Kabuki syndrome had two objectives. The first was to further describe the syndrome features. In order to do so, clinical geneticists were asked to submit cases—providing clinical photographs and completing a phenotype questionnaire for individuals in whom they felt the diagnosis of Kabuki syndrome was secure. All submitted cases were reviewed by four diagnosticians familiar with Kabuki syndrome. The diagnosis was agreed upon in 48 previously unpublished individuals. Our data on these 48 individuals show that Kabuki syndrome variably affects the development and function of many organ systems. The second objective of the study was to explore possible etiological clues found in our data and from review of the literature. We discuss advanced paternal age, cytogenetic abnormalities, and familial cases, and explore syndromes with potentially informative overlapping features. We find support for a genetic etiology, with a probable autosomal dominant mode of inheritance, and speculate that there is involvement of the interferon regulatory factor 6 (IRF6) gene pathway. Very recently, a microduplication of 8p has been described in multiple affected individuals, the proportion of individuals with the duplication is yet to be determined.


Human Mutation | 2013

Coffin-siris syndrome and the BAF complex: Genotype-phenotype study in 63 patients

Gijs W.E. Santen; Emmelien Aten; Anneke T. Vulto-van Silfhout; Caroline Pottinger; Bregje W.M. Bon; Ivonne J.H.M. Minderhout; Ronelle Snowdowne; Christian A.C. Lans; Merel W. Boogaard; Margot M.L. Linssen; Linda Vijfhuizen; Michiel J.R. Wielen; M.J. (Ellen) Vollebregt; Martijn H. Breuning; Marjolein Kriek; Arie van Haeringen; Johan T. den Dunnen; Alexander Hoischen; Jill Clayton-Smith; Bert B.A. Vries; Raoul C. M. Hennekam; Martine J. van Belzen; Mariam Almureikhi; Anwar Baban; Mafalda Barbosa; Tawfeg Ben-Omran; Katherine Berry; Stefania Bigoni; Odile Boute; Louise Brueton

De novo germline variants in several components of the SWI/SNF‐like BAF complex can cause Coffin–Siris syndrome (CSS), Nicolaides–Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. We screened 63 patients with a clinical diagnosis of CSS for these genes (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1, and SMARCE1) and identified pathogenic variants in 45 (71%) patients. We found a high proportion of variants in ARID1B (68%). All four pathogenic variants in ARID1A appeared to be mosaic. By using all variants from the Exome Variant Server as test data, we were able to classify variants in ARID1A, ARID1B, and SMARCB1 reliably as being pathogenic or nonpathogenic. For SMARCA2, SMARCA4, and SMARCE1 several variants in the EVS remained unclassified, underlining the importance of parental testing. We have entered all variant and clinical information in LOVD‐powered databases to facilitate further genotype–phenotype correlations, as these will become increasingly important because of the uptake of targeted and untargeted next generation sequencing in diagnostics. The emerging phenotype–genotype correlation is that SMARCB1 patients have the most marked physical phenotype and severe cognitive and growth delay. The variability in phenotype seems most marked in ARID1A and ARID1B patients. Distal limbs anomalies are most marked in ARID1A patients and least in SMARCB1 patients. Numbers are small however, and larger series are needed to confirm this correlation.


Human Genetics | 2007

High-density single nucleotide polymorphism array analysis in patients with germline deletions of 22q11.2 and malignant rhabdoid tumor

Eric M. Jackson; Tamim H. Shaikh; Sridharan Gururangan; Marilyn C. Jones; David Malkin; Sarah M. Nikkel; Craig W. Zuppan; Luanne M. Wainwright; Fan Zhang; Jaclyn A. Biegel

Malignant rhabdoid tumors are highly aggressive neoplasms found primarily in infants and young children. The majority of rhabdoid tumors arise as a result of homozygous inactivating deletions or mutations of the INI1 gene located in chromosome band 22q11.2. Germline mutations of INI1 predispose to the development of rhabdoid tumors of the brain, kidney and extra-renal tissues, consistent with its function as a tumor suppressor gene. We now describe five patients with germline deletions in chromosome band 22q11.2 that included the INI1 gene locus, leading to the development of rhabdoid tumors. Two patients had phenotypic findings that were suggestive but not diagnostic for DiGeorge/Velocardiofacial syndrome (DGS/VCFS). The other three infants had highly aggressive disease with multiple tumors at the time of presentation. The extent of the deletions was determined by fluorescence in situ hybridization and high-density oligonucleotide based single nucleotide polymorphism arrays. The deletions in the two patients with features of DGS/VCFS were distal to the region typically deleted in patients with this genetic disorder. The three infants with multiple primary tumors had smaller but overlapping deletions, primarily involving INI1. The data suggest that the mechanisms underlying the deletions in these patients may be similar to those that lead to DGS/VCFS, as they also appear to be mediated by related, low copy repeats (LCRs) in 22q11.2. These are the first reported cases in which an association has been established between recurrent, interstitial deletions mediated by LCRs in 22q11.2 and a predisposition to cancer.


Journal of obstetrics and gynaecology Canada | 2008

Carrier Screening for Thalassemia and Hemoglobinopathies in Canada

Sylvie Langlois; Jason C. Ford; David Chitayat; Valérie Désilets; Sandra A. Farrell; Michael T. Geraghty; Tanya N. Nelson; Sarah M. Nikkel; Andrea Shugar; David Skidmore; Victoria M. Allen; François Audibert; Claire Blight; Alain Gagnon; Jo-Ann Johnson; R. Douglas Wilson; Philip Wyatt

OBJECTIVE To provide recommendations to physicians, midwives, genetic counsellors, and clinical laboratory scientists involved in pre-conceptional or prenatal care regarding carrier screening for thalassemia and hemoglobinopathies (e.g., sickle cell anemia and other qualitative hemoglobin disorders). OUTCOMES To determine the populations to be screened and the appropriate tests to offer to minimize practice variations across Canada. EVIDENCE The Medline database was searched for relevant articles published between 1986 and 2007 on carrier screening for thalassemia and hemoglobinopathies. Key textbooks were also reviewed. Recommendations were quantified using the Evaluation of Evidence guidelines developed by the Canadian Task Force on Preventive Health Care. VALUES The evidence collected from the Medline search was reviewed by the Prenatal Diagnosis Committee of the Canadian College of Medical Geneticists (CCMG) and the Genetics Committee of the Society of Obstetricians and Gynaecologists of Canada (SOGC). BENEFITS, HARMS, AND COSTS Screening of individuals at increased risk of being carriers for thalassemia and hemoglobinopathies can identify couples with a 25% risk of having a pregnancy with a significant genetic disorder for which prenatal diagnosis is possible. Ideally, screening should be done pre-conceptionally. However, for a significant proportion of patients, the screening will occur during the pregnancy, and the time constraint for obtaining screening results may result in psychological distress. This guideline does not include a cost analysis. RECOMMENDATIONS 1. Carrier screening for thalassemia and hemoglobinopathies should be offered to a woman if she and/or her partner are identified as belonging to an ethnic population whose members are at higher risk of being carriers. Ideally, this screening should be done pre-conceptionally or as early as possible in the pregnancy. (II-2A) 2. Screening should consist of a complete blood count, as well as hemoglobin electrophoresis or hemoglobin high performance liquid chromatography. This investigation should include quantitation of HbA2 and HbF. In addition, if there is microcytosis(mean cellular volume < 80 fL) and/or hypochromia (mean cellular hemoglobin < 27 pg) in the presence of a normal hemoglobin electrophoresis or high performance liquid chromatography the patient should be investigated with a brilliant cresyl blue stained blood smear to identify H bodies. A serum ferritin (to exclude iron deficiency anemia) should be performed simultaneously. (III-A) 3. If a womans initial screening is abnormal (e.g., showing microcytosis or hypochromia with or without an elevated HbA2, or a variant Hb on electrophoresis or high performance liquid chromatography) then screening of the partner should be performed. This would include a complete blood count as well as hemoglobin electrophoresis or HPLC, HbA2 and HbF quantitation,and H body staining. (III-A) 4. If both partners are found to be carriers of thalassemia or an Hb variant, or of a combination of thalassemia and a hemoglobin variant, they should be referred for genetic counselling. Ideally,this should be prior to conception, or as early as possible in the pregnancy. Additional molecular studies may be required to clarify the carrier status of the parents and thus the risk to the fetus. (II-3A) 5. Prenatal diagnosis should be offered to the pregnant woman/couple at risk for having a fetus affected with a clinically significant thalassemia or hemoglobinopathy. Prenatal diagnosis should be performed with the patients informed consent. If prenatal diagnosis is declined, testing of the child should be done to allow early diagnosis and referral to a pediatric hematology centre, if indicated. (II-3A) 6. Prenatal diagnosis by DNA analysis can be performed using cells obtained by chorionic villus sampling or amniocentesis. Alternatively for those who decline invasive testing and are at risk of hemoglobin Barts hydrops fetalis (four-gene deletion alpha-thalassemia), serial detailed fetal ultrasound for assessment of the fetal cardiothoracic ratio (normal < 0.5) should be done in a centre that has experience conducting these assessments for early identification of an affected fetus. If an abnormality is detected, a referral to a tertiary care centre is recommended for further assessment and counselling. Confirmatory studies by DNA analysis of amniocytes should be done if a termination of pregnancy is being considered. (II-3A) 7. The finding of hydrops fetalis on ultrasound in the second or third trimester in women with an ethnic background that has an increased risk of alpha-thalassemia should prompt immediate investigation of the pregnant patient and her partner to determine their carrier status for alpha-thalassemia. (III-A) VALIDATION: This guideline has been prepared by the Prenatal Diagnosis Committee of the Canadian College of Medical Geneticists (CCMG) and the Genetics Committee of the Society of Obstetricians and Gynaecologists of Canada (SOGC) and approved by the Board of Directors of the CCMG and the Executive and Council of the SOGC.


Journal of Medical Genetics | 2012

Genotypic and phenotypic analysis of 396 individuals with mutations in Sonic Hedgehog

Benjamin D. Solomon; Kelly A. Bear; Adrian Wyllie; Amelia A. Keaton; Christèle Dubourg; Véronique David; Sandra Mercier; Sylvie Odent; Ute Hehr; Aimee D.C. Paulussen; Nancy J. Clegg; Mauricio R. Delgado; Sherri J. Bale; Felicitas Lacbawan; Holly H. Ardinger; Arthur S. Aylsworth; Ntombenhle Louisa Bhengu; Stephen R. Braddock; Karen Brookhyser; Barbara K. Burton; Harald Gaspar; Art Grix; Dafne Dain Gandelman Horovitz; Erin Kanetzke; Hülya Kayserili; Dorit Lev; Sarah M. Nikkel; Mary E. Norton; Richard Roberts; Howard M. Saal

Background Holoprosencephaly (HPE), the most common malformation of the human forebrain, may result from mutations in over 12 genes. Sonic Hedgehog (SHH) was the first such gene discovered; mutations in SHH remain the most common cause of non-chromosomal HPE. The severity spectrum is wide, ranging from incompatibility with extrauterine life to isolated midline facial differences. Objective To characterise genetic and clinical findings in individuals with SHH mutations. Methods Through the National Institutes of Health and collaborating centres, DNA from approximately 2000 individuals with HPE spectrum disorders were analysed for SHH variations. Clinical details were examined and combined with published cases. Results This study describes 396 individuals, representing 157 unrelated kindreds, with SHH mutations; 141 (36%) have not been previously reported. SHH mutations more commonly resulted in non-HPE (64%) than frank HPE (36%), and non-HPE was significantly more common in patients with SHH than in those with mutations in the other common HPE related genes (p<0.0001 compared to ZIC2 or SIX3). Individuals with truncating mutations were significantly more likely to have frank HPE than those with non-truncating mutations (49% vs 35%, respectively; p=0.012). While mutations were significantly more common in the N-terminus than in the C-terminus (including accounting for the relative size of the coding regions, p=0.00010), no specific genotype―phenotype correlations could be established regarding mutation location. Conclusions SHH mutations overall result in milder disease than mutations in other common HPE related genes. HPE is more frequent in individuals with truncating mutations, but clinical predictions at the individual level remain elusive.


European Journal of Neuroscience | 2009

Oculomotor control in children with fetal alcohol spectrum disorders assessed using a mobile eye‐tracking laboratory

Courtney R. Green; A. M. Mihic; Donald C. Brien; I. T. Armstrong; Sarah M. Nikkel; B.C. Stade; Carmen Rasmussen; Douglas P. Munoz; James N. Reynolds

Prenatal exposure to alcohol can result in a spectrum of adverse developmental outcomes, collectively termed fetal alcohol spectrum disorders (FASDs). This study evaluated deficits in sensory, motor and cognitive processing in children with FASD that can be identified using eye movement testing. Our study group was composed of 89 children aged 8–15 years with a diagnosis within the FASD spectrum [i.e. fetal alcohol syndrome (FAS), partial fetal alcohol syndrome (pFAS), and alcohol‐related neurodevelopmental disorder (ARND)], and 92 controls. Subjects looked either towards (prosaccade) or away from (antisaccade) a peripheral target that appeared on a computer monitor, and eye movements were recorded with a mobile, video‐based eye tracker. We hypothesized that: (i) differences in the magnitude of deficits in eye movement control exist across the three diagnostic subgroups; and (ii) children with FASD display a developmental delay in oculomotor control. Children with FASD had increased saccadic reaction times (SRTs), increased intra‐subject variability in SRTs, and increased direction errors in both the prosaccade and antisaccade tasks. Although development was associated with improvements across tasks, children with FASD failed to achieve age‐matched control levels of performance at any of the ages tested. Moreover, children with ARND had faster SRTs and made fewer direction errors in the antisaccade task than children with pFAS or FAS, although all subgroups were different from controls. Our results demonstrate that eye tracking can be used as an objective measure of brain injury in FASD, revealing behavioral deficits in all three diagnostic subgroups independent of facial dysmorphology.


European Journal of Human Genetics | 2009

Brachydactyly A-1 mutations restricted to the central region of the N-terminal active fragment of Indian Hedgehog

Ashley M Byrnes; Lemuel Racacho; Allison Grimsey; Louanne Hudgins; Andrea Kwan; Michel Sangalli; Alexa Kidd; Yuval Yaron; Yu-Lung Lau; Sarah M. Nikkel; Dennis E. Bulman

Mutations in the gene Indian Hedgehog (IHH) that cause Brachydactyly A-1 (BDA1) have been restricted to a specific region of the N-terminal active fragment of Indian Hedgehog involving codons 95, 100, 131, and 154. We describe two novel mutations in codons 128 and 130, not previously implicated in BDA1. Furthermore, we identified an independent mutation at codon 131 and we also describe a New Zealand family, which carries the ‘Farabee’ founder mutation and haplotype. All of the BDA1 mutations occur in a restricted area of the N-terminal active fragment of the IHH and are in contrast to those mutations causing an autosomal recessive acrocapitofemoral dysplasia, whose mutations are located at the distal N- and C-terminal regions of IHH-N and are physically separated from the BDA1-causing mutations. The identification of multiple independent mutations in codons 95, 100, and now in 131, implicate a discrete function for this region of the protein. Finally, we present a clinical review of all reported and confirmed cases of BDA1, highlighting features of the disorder, which add to the spectrum of the IHH mutations.


American Journal of Human Genetics | 2009

Mutations in MMP9 and MMP13 Determine the Mode of Inheritance and the Clinical Spectrum of Metaphyseal Anadysplasia

Ekkehart Lausch; Romy Keppler; Katja Hilbert; Valérie Cormier-Daire; Sarah M. Nikkel; Gen Nishimura; Sheila Unger; Jürgen W. Spranger; Andrea Superti-Furga; Bernhard Zabel

The matrix metalloproteinases MMP9 and MMP13 catalyze the degradation of extracellular matrix (ECM) components in the growth plate and at the same time cleave and release biologically active molecules stored in the ECM, such as VEGFA. In mice, ablation of Mmp9, Mmp13, or both Mmp9 and Mmp13 causes severe distortion of the metaphyseal growth plate. We report that mutations in either MMP9 or MMP13 are responsible for the human disease metaphyseal anadysplasia (MAD), a heterogeneous group of disorders for which a milder recessive variant and a more severe dominant variant are known. We found that recessive MAD is caused by homozygous loss of function of either MMP9 or MMP13, whereas dominant MAD is associated with missense mutations in the prodomain of MMP13 that determine autoactivation of MMP13 and intracellular degradation of both MMP13 and MMP9, resulting in a double enzymatic deficiency.

Collaboration


Dive into the Sarah M. Nikkel's collaboration.

Top Co-Authors

Avatar

Alain Gagnon

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

David Chitayat

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Dennis E. Bulman

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar

R. Douglas Wilson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvie Langlois

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael T. Geraghty

Children's Hospital of Eastern Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge