Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Małgorzata J.M. Nowaczyk is active.

Publication


Featured researches published by Małgorzata J.M. Nowaczyk.


Nature Genetics | 2004

Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B

Ian D. Krantz; Jennifer McCallum; Cheryl DeScipio; Maninder Kaur; Lynette Gillis; Dinah Yaeger; Lori Jukofsky; Nora Wasserman; Armand Bottani; Colleen A. Morris; Małgorzata J.M. Nowaczyk; Helga V. Toriello; Michael J. Bamshad; John C. Carey; Eric Rappaport; Shimako Kawauchi; Arthur D. Lander; Anne L. Calof; Hui Hua Li; Marcella Devoto; Laird G. Jackson

Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited multisystem developmental disorder characterized by growth and cognitive retardation; abnormalities of the upper limbs; gastroesophageal dysfunction; cardiac, ophthalmologic and genitourinary anomalies; hirsutism; and characteristic facial features. Genital anomalies, pyloric stenosis, congenital diaphragmatic hernias, cardiac septal defects, hearing loss and autistic and self-injurious tendencies also frequently occur. Prevalence is estimated to be as high as 1 in 10,000 (ref. 4). We carried out genome-wide linkage exclusion analysis in 12 families with CdLS and identified four candidate regions, of which chromosome 5p13.1 gave the highest multipoint lod score of 2.7. This information, together with the previous identification of a child with CdLS with a de novo t(5;13)(p13.1;q12.1) translocation, allowed delineation of a 1.1-Mb critical region on chromosome 5 for the gene mutated in CdLS. We identified mutations in one gene in this region, which we named NIPBL, in four sporadic and two familial cases of CdLS. We characterized the genomic structure of NIPBL and found that it is widely expressed in fetal and adult tissues. The fly homolog of NIPBL, Nipped-B, facilitates enhancer-promoter communication and regulates Notch signaling and other developmental pathways in Drosophila melanogaster.


Journal of Medical Genetics | 2008

Clinical and molecular delineation of the 17q21.31 microdeletion syndrome

David A. Koolen; Andrew J. Sharp; Jane Hurst; Helen V. Firth; Samantha J. L. Knight; A. Goldenberg; P. Saugier-Veber; Rolph Pfundt; Lisenka E.L.M. Vissers; A Destree; Bernard Grisart; Liesbeth Rooms; N. Van der Aa; Michael Field; Anna Hackett; Kathleen Bell; Małgorzata J.M. Nowaczyk; Grazia M. Mancini; Pino J. Poddighe; Charles E. Schwartz; E. Rossi; M. De Gregori; L. L. Antonacci-Fulton; Michael D. McLellan; J. M. Garrett; M. A. Wiechert; Tracie L. Miner; S. Crosby; Roberto Ciccone; Lionel Willatt

Background: The chromosome 17q21.31 microdeletion syndrome is a novel genomic disorder that has originally been identified using high resolution genome analyses in patients with unexplained mental retardation. Aim: We report the molecular and/or clinical characterisation of 22 individuals with the 17q21.31 microdeletion syndrome. Results: We estimate the prevalence of the syndrome to be 1 in 16 000 and show that it is highly underdiagnosed. Extensive clinical examination reveals that developmental delay, hypotonia, facial dysmorphisms including a long face, a tubular or pear-shaped nose and a bulbous nasal tip, and a friendly/amiable behaviour are the most characteristic features. Other clinically important features include epilepsy, heart defects and kidney/urologic anomalies. Using high resolution oligonucleotide arrays we narrow the 17q21.31 critical region to a 424 kb genomic segment (chr17: 41046729–41470954, hg17) encompassing at least six genes, among which is the gene encoding microtubule associated protein tau (MAPT). Mutation screening of MAPT in 122 individuals with a phenotype suggestive of 17q21.31 deletion carriers, but who do not carry the recurrent deletion, failed to identify any disease associated variants. In five deletion carriers we identify a <500 bp rearrangement hotspot at the proximal breakpoint contained within an L2 LINE motif and show that in every case examined the parent originating the deletion carries a common 900 kb 17q21.31 inversion polymorphism, indicating that this inversion is a necessary factor for deletion to occur (p<10−5). Conclusion: Our data establish the 17q21.31 microdeletion syndrome as a clinically and molecularly well recognisable genomic disorder.


American Journal of Human Genetics | 2006

Absence of a Paternally Inherited FOXP2 Gene in Developmental Verbal Dyspraxia

Lars Feuk; Aino Kalervo; Marita Lipsanen-Nyman; Jennifer Skaug; Kazuhiko Nakabayashi; Brenda Finucane; Danielle Hartung; Micheil Innes; Batsheva Kerem; Małgorzata J.M. Nowaczyk; Joseph Rivlin; Wendy Roberts; Lili Senman; Anne Summers; Peter Szatmari; Virginia Wong; John B. Vincent; Susan Zeesman; Lucy R. Osborne; Janis Oram Cardy; Juha Kere; Stephen W. Scherer; Katariina Hannula-Jouppi

Mutations in FOXP2 cause developmental verbal dyspraxia (DVD), but only a few cases have been described. We characterize 13 patients with DVD--5 with hemizygous paternal deletions spanning the FOXP2 gene, 1 with a translocation interrupting FOXP2, and the remaining 7 with maternal uniparental disomy of chromosome 7 (UPD7), who were also given a diagnosis of Silver-Russell Syndrome (SRS). Of these individuals with DVD, all 12 for whom parental DNA was available showed absence of a paternal copy of FOXP2. Five other individuals with deletions of paternally inherited FOXP2 but with incomplete clinical information or phenotypes too complex to properly assess are also described. Four of the patients with DVD also meet criteria for autism spectrum disorder. Individuals with paternal UPD7 or with partial maternal UPD7 or deletion starting downstream of FOXP2 do not have DVD. Using quantitative real-time polymerase chain reaction, we show the maternally inherited FOXP2 to be comparatively underexpressed. Our results indicate that absence of paternal FOXP2 is the cause of DVD in patients with SRS with maternal UPD7. The data also point to a role for differential parent-of-origin expression of FOXP2 in human speech development.


Nature Genetics | 2012

De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome

Jean-Baptiste Rivière; Bregje W.M. van Bon; Alexander Hoischen; Stanislav Kholmanskikh; Brian J. O'Roak; Christian Gilissen; Sabine J. Gijsen; Christopher T. Sullivan; Susan L. Christian; Omar A. Abdul-Rahman; Joan F. Atkin; Nicolas Chassaing; Valérie Drouin-Garraud; Andrew E. Fry; Jean-Pierre Fryns; Karen W. Gripp; Marlies Kempers; Tjitske Kleefstra; Grazia M.S. Mancini; Małgorzata J.M. Nowaczyk; Conny M. A. van Ravenswaaij-Arts; Tony Roscioli; Michael Marble; Jill A. Rosenfeld; Victoria M. Siu; Bert B.A. de Vries; Jay Shendure; Alain Verloes; Joris A. Veltman; Han G. Brunner

Brain malformations are individually rare but collectively common causes of developmental disabilities. Many forms of malformation occur sporadically and are associated with reduced reproductive fitness, pointing to a causative role for de novo mutations. Here, we report a study of Baraitser-Winter syndrome, a well-defined disorder characterized by distinct craniofacial features, ocular colobomata and neuronal migration defect. Using whole-exome sequencing of three proband-parent trios, we identified de novo missense changes in the cytoplasmic actin–encoding genes ACTB and ACTG1 in one and two probands, respectively. Sequencing of both genes in 15 additional affected individuals identified disease-causing mutations in all probands, including two recurrent de novo alterations (ACTB, encoding p.Arg196His, and ACTG1, encoding p.Ser155Phe). Our results confirm that trio-based exome sequencing is a powerful approach to discover genes causing sporadic developmental disorders, emphasize the overlapping roles of cytoplasmic actin proteins in development and suggest that Baraitser-Winter syndrome is the predominant phenotype associated with mutation of these two genes.


American Journal of Medical Genetics Part A | 2006

Speech and language impairment and oromotor dyspraxia due to deletion of 7q31 that involves FOXP2

Susan Zeesman; Małgorzata J.M. Nowaczyk; Ikuko Teshima; Wendy Roberts; Janis Oram Cardy; Jessica Brian; Lili Senman; Lars Feuk; Lucy R. Osborne; Stephen W. Scherer

We report detailed clinical, cytogenetic, and molecular findings in a girl with a deletion of chromosome 7q31‐q32. This child has a severe communication disorder with evidence of oromotor dyspraxia, dysmorphic features, and mild developmental delay. She is unable to cough, sneeze, or laugh spontaneously. Her deletion is on the paternally inherited chromosome and includes the FOXP2 gene, which has recently been associated with speech and language impairment and a similar form of oromotor dyspraxia in at least three other published cases. We hypothesize that our patients communication disorder and oromotor deficiency are due to haploinsufficiency for FOXP2 and that her dysmorphism and developmental delay are a consequence of the absence of the other genes involved in the microdeletion. We propose that this patient, together with others reported in the literature, may define a new contiguous gene deletion syndrome encompassing the 7q31‐FOXP2 region. Cytogenetic and molecular analysis of this region should be considered for other individuals displaying similar characteristics.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2012

Smith–Lemli–Opitz syndrome: Phenotype, natural history, and epidemiology†

Małgorzata J.M. Nowaczyk; Mira Irons

Smith–Lemli–Opitz syndrome (SLOS) is a congenital multiple anomaly/intellectual disability syndrome caused by a deficiency of cholesterol synthesis resulting from a deficiency of 7‐dehydrocholesterol (7DHC) reductase encoded by DHCR7. SLOS is inherited in an autosomal recessive pattern. It is characterized by prenatal and postnatal growth retardation, microcephaly, a variable degree of intellectual disability that encompasses normal intelligence to severe intellectual deficiency, and multiple major and minor malformations. External malformations include distinctive facial features, cleft palate, postaxial polydactyly, 2–3 syndactyly of the toes, and underdeveloped external genitalia in males, while internal anomalies may affect every organ system. The clinical spectrum is wide, and rare individuals have been described with normal development and only minor malformations. The clinical diagnosis of SLOS is confirmed by demonstrating an abnormally elevated concentration of the cholesterol precursor, 7DHC, in serum or other tissues, or by the presence of two DHCR7 mutations. The enzymatic deficiency results in decreased cholesterol and increased 7DHC levels, both during embryonic development and after birth. The malformations found in SLOS may result from decreased cholesterol, increased 7DHC or a combination of these two factors. This review discusses the physical and behavioral phenotype of SLOS, the diagnostic approaches, the natural history from the prenatal period to adulthood, and current understanding of the pathophysiology of SLOS.


American Journal of Medical Genetics | 2000

Mutation analysis and description of sixteen RSH/Smith-Lemli-Opitz syndrome patients: Polymerase chain reaction-based assays to simplify genotyping

Patrycja A. Krakowiak; Ngozi A. Nwokoro; Christopher A. Wassif; Kevin P. Battaile; Małgorzata J.M. Nowaczyk; William E. Connor; Cheryl L. Maslen; Robert D. Steiner; Forbes D. Porter

We report the clinical and molecular data of 16 patients with RSH/Smith-Lemli-Opitz syndrome (RSH/SLOS) with varying phenotypic severity, for which we have identified mutations in both alleles. RSH/SLOS is an autosomal recessive malformation syndrome caused by mutations in the gene encoding the sterol Delta(7)-reductase. This protein catalyzes the reduction of 7-dehydrocholesterol to cholesterol in the last step of cholesterol biosynthesis via the Kandutsch-Russell pathway. In addition to previously reported mutations (T93M, L109P, G147D, W151X, T154M, R242C, A247V, T289I, IVS8-1G-->C, Y408H, and E448K), we have identified six previously undescribed mutations (321G-->C, W177R, R242H, Y318N, L341P, and C444Y). We also report rapid polymerase chain reaction (PCR)-based assays developed to detect four of the recurring mutations (T93M, W151X, V326L, and R404C) and six other RSH/SLOS mutations (321G-->C, L109P, T154M, T289I, Y318N, and L341P). The purpose of this article is to correlate detailed clinical information with molecular data in order to improve our understanding of the genotype-phenotype correlation of RSH/SLOS and to report the development of PCR-based assays that will allow more rapid mutation analysis.


American Journal of Medical Genetics | 1998

Smith-Lemli-Opitz syndrome: phenotypic extreme with minimal clinical findings.

Małgorzata J.M. Nowaczyk; Donald T. Whelan; Robert E. Hill

Smith-Lemli-Opitz syndrome (SLO) is caused by inherited enzymatic deficiency of 7-dehydrocholesterol-delta7-reductase and resultant cholesterol deficiency. It comprises a characteristic combination of facial features, malformations, and mental retardation. We report on three related patients (two brothers and their first cousin) with mental retardation and minimal physical signs in whom the diagnosis of SLO was delayed for a number of years. The presence of a third-degree relative in the absence of consanguinity in this family supports the proposed high population carrier frequency. Our report suggests that cases of mild SLO remain undiagnosed and untreated, and that awareness of this common cause of mental retardation is low.


Journal of Medical Genetics | 2005

Deletion 9q34.3 syndrome: genotype-phenotype correlations and an extended deletion in a patient with features of Opitz C trigonocephaly

Svetlana A. Yatsenko; S.W. Cheung; Daryl A. Scott; Małgorzata J.M. Nowaczyk; Mark A. Tarnopolsky; Sakkubai Naidu; G. Bibat; Ankita Patel; J. G. Leroy; Fernando Scaglia; Pawel Stankiewicz; James R. Lupski

Submicroscopic deletion del(9)(q34.3) is a rare constitutional microdeletion syndrome involving the gene-rich subtelomeric region of the long arm of chromosome 9, with about 30 cases reported.1,2,3,4,5,6,7,8,9,10,11,12 Visible constitutional 9q34 deletions are extremely rare, with only a few cases described.2,10,12 The low prevalence of large terminal deletions at the 9q34 chromosome region in liveborns is thought to reflect lethality in early embryogenesis.13 At least 18 patients with 9q34.3 microdeletions detected by fluorescence in situ hybridisation (FISH) testing, in whom normal karyotypes were initially obtained, have been reported.1,5–7,11 Many patients carry a cryptic del(9)(q34.3) that may result in a clinically recognisable phenotype characterised by severe developmental delay, mental retardation, hypotonia, congenital heart defects (CHD), seizures, and prominent craniofacial features including microcephaly, arched eyebrows, hypertelorism, short nose with anteverted nostrils, open mouth, and a protruding tongue.6,7,11 Recently, based on clinical and molecular breakpoint analyses using FISH, microsatellites, and single nucleotide polymorphism (SNP) genotyping, two research groups have independently identified an ∼1.0 Mb shortest region of overlap (SRO) of 9q34.3 deletions.6,11 Although the clinical criteria and incidence of the 9q34.3 deletion are not yet well established, the increasing number of patients reported with del(9)(q34.3) is probably related to the widespread clinical application of telomere FISH. Hence, this microdeletion syndrome may be more common than previously thought. We have identified a 9q34.3 deletion in each of five unrelated patients, including a patient with clinical features similar to Opitz trigonocephaly C syndrome (OTCS; MIM 211750). A monogenic cause and autosomal recessive mode of inheritance have been considered probable in OTCS, usually associated with a normal karyotype.14–19 In contrast, several reports on patients with multiple congenital anomalies resembling OTCS and chromosomal …


Clinical Genetics | 2001

The Smith-Lemli-Opitz syndrome : a novel metabolic way of understanding developmental biology, embryogenesis, and dysmorphology

Małgorzata J.M. Nowaczyk; J. S. Waye

The brief history of the Smith–Lemli–Opitz syndrome (SLOS) (MIM 270400) reflects that of latter 20th century dysmorphology and biochemical and molecular genetics: from its first description as a rare but characteristic multiple malformation syndrome known only to a handful of dysmorphologists, to a relatively common Garrodian defect with a complex molecular basis that has captured the attention of researchers and basic scientists from the fields as diverse as embryology, developmental biology, sterol biochemistry, epidemiology, and teratology. The discovery of the underlying biochemical defect – deficiency of 3β‐hydroxysteroid‐Δ7‐reductase (DHCR7), an enzyme catalyzing the last step of cholesterol biosynthesis, and the resultant generalized cholesterol deficiency – has led to an explosion of knowledge of this biochemical pathway and to a paradigm shift in the recognition of metabolic deficiencies as causes of dysmorphic syndromes. Characterization of the human DHCR7 gene and the identification of mutations in patients with SLOS have revealed a complex picture of molecular heterogeneity and provided insights into the structure and function of DHCR7. SLOS is the first metabolic malformation syndrome with profound effects on the body plan, and its discovery has paved the way to the discovery of a number of other defects of the cholesterol synthetic pathway.

Collaboration


Dive into the Małgorzata J.M. Nowaczyk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Forbes D. Porter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sarah M. Nikkel

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen W. Scherer

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill A. Rosenfeld

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge