Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Martin is active.

Publication


Featured researches published by Sarah Martin.


Proceedings of the National Academy of Sciences of the United States of America | 2013

RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain

Sarah Picaud; Christopher Wells; I. Felletar; Deborah Brotherton; Sarah Martin; P. Savitsky; Beatriz Diez-Dacal; Martin Philpott; C. Bountra; Hannah Lingard; Oleg Fedorov; Susanne Müller; Paul E. Brennan; Stefan Knapp; Panagis Filippakopoulos

Significance Bromo and extraterminal (BET) proteins have diverse roles in regulating tissue-specific transcriptional programs, raising safety concerns for their inhibition and suggesting that targeting of specific isoforms or even specific domains within this subfamily is important. We report the discovery and characterization of RVX-208 as a domain-selective inhibitor of BETs and provide a potential mechanism of action of a clinical compound that was identified based on phenotypic screens. Bromodomains have emerged as attractive candidates for the development of inhibitors targeting gene transcription. Inhibitors of the bromo and extraterminal (BET) family recently showed promising activity in diverse disease models. However, the pleiotropic nature of BET proteins regulating tissue-specific transcription has raised safety concerns and suggested that attempts should be made for domain-specific targeting. Here, we report that RVX-208, a compound currently in phase II clinical trials, is a BET bromodomain inhibitor specific for second bromodomains (BD2s). Cocrystal structures revealed binding modes of RVX-208 and its synthetic precursor, and fluorescent recovery after photobleaching demonstrated that RVX-208 displaces BET proteins from chromatin. However, gene-expression data showed that BD2 inhibition only modestly affects BET-dependent gene transcription. Our data demonstrate the feasibility of specific targeting within the BET family resulting in different transcriptional outcomes and highlight the importance of BD1 in transcriptional regulation.


Nature Chemical Biology | 2014

Dual kinase-bromodomain inhibitors for rationally designed polypharmacology.

Pietro Ciceri; Susanne Müller; Alison O'Mahony; Oleg Fedorov; Panagis Filippakopoulos; Jeremy P. Hunt; Elisabeth Lasater; Gabriel Pallares; Sarah Picaud; Christopher Wells; Sarah Martin; Lisa Wodicka; Neil P. Shah; Daniel Kelly Treiber; Stefan Knapp

Concomitant inhibition of multiple cancer-driving kinases is an established strategy to improve the durability of clinical responses to targeted therapies. The difficulty of discovering kinase inhibitors with an appropriate multi-target profile has, however, necessitated the application of combination therapies, which can pose significant clinical development challenges. Epigenetic reader domains of the bromodomain family have recently emerged as novel targets for cancer therapy. Here we report that several clinical kinase inhibitors also inhibit bromodomains with therapeutically relevant potencies and are best classified as dual kinase/bromodomain inhibitors. Nanomolar activity on BRD4 by BI-2536 and TG-101348, clinical PLK1 and JAK2/FLT3 kinase inhibitors, respectively, is particularly noteworthy as these combinations of activities on independent oncogenic pathways exemplify a novel strategy for rational single agent polypharmacological targeting. Furthermore, structure-activity relationships and co-crystal structures identify design features that enable a general platform for the rational design of dual kinase/bromodomain inhibitors.


Journal of the American Chemical Society | 2014

Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains.

Duncan A. Hay; Oleg Fedorov; Sarah Martin; Dean C. Singleton; Cynthia Tallant; Christopher Wells; Sarah Picaud; Martin Philpott; Octovia P. Monteiro; Catherine Rogers; Stuart J. Conway; Timothy P. C. Rooney; Anthony Tumber; Clarence Yapp; Panagis Filippakopoulos; Mark Edward Bunnage; Susanne Müller; Stefan Knapp; Christopher J. Schofield; Paul E. Brennan

Small-molecule inhibitors that target bromodomains outside of the bromodomain and extra-terminal (BET) sub-family are lacking. Here, we describe highly potent and selective ligands for the bromodomain module of the human lysine acetyl transferase CBP/p300, developed from a series of 5-isoxazolyl-benzimidazoles. Our starting point was a fragment hit, which was optimized into a more potent and selective lead using parallel synthesis employing Suzuki couplings, benzimidazole-forming reactions, and reductive aminations. The selectivity of the lead compound against other bromodomain family members was investigated using a thermal stability assay, which revealed some inhibition of the structurally related BET family members. To address the BET selectivity issue, X-ray crystal structures of the lead compound bound to the CREB binding protein (CBP) and the first bromodomain of BRD4 (BRD4(1)) were used to guide the design of more selective compounds. The crystal structures obtained revealed two distinct binding modes. By varying the aryl substitution pattern and developing conformationally constrained analogues, selectivity for CBP over BRD4(1) was increased. The optimized compound is highly potent (Kd = 21 nM) and selective, displaying 40-fold selectivity over BRD4(1). Cellular activity was demonstrated using fluorescence recovery after photo-bleaching (FRAP) and a p53 reporter assay. The optimized compounds are cell-active and have nanomolar affinity for CBP/p300; therefore, they should be useful in studies investigating the biological roles of CBP and p300 and to validate the CBP and p300 bromodomains as therapeutic targets.


Journal of Medicinal Chemistry | 2013

Optimization of 3,5-dimethylisoxazole derivatives as potent bromodomain ligands.

David S. Hewings; Oleg Fedorov; Panagis Filippakopoulos; Sarah Martin; Sarah Picaud; Anthony Tumber; Christopher Wells; Monica M. Olcina; Katherine Freeman; Andrew Gill; Alison J. Ritchie; David W. Sheppard; Angela J. Russell; Ester M. Hammond; Stefan Knapp; Paul E. Brennan; Stuart J. Conway

The bromodomain protein module, which binds to acetylated lysine, is emerging as an important epigenetic therapeutic target. We report the structure-guided optimization of 3,5-dimethylisoxazole derivatives to develop potent inhibitors of the BET (bromodomain and extra terminal domain) bromodomain family with good ligand efficiency. X-ray crystal structures of the most potent compounds reveal key interactions required for high affinity at BRD4(1). Cellular studies demonstrate that the phenol and acetate derivatives of the lead compounds showed strong antiproliferative effects on MV4;11 acute myeloid leukemia cells, as shown for other BET bromodomain inhibitors and genetic BRD4 knockdown, whereas the reported compounds showed no general cytotoxicity in other cancer cell lines tested.


Cancer Research | 2015

Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy

Sarah Picaud; Oleg Fedorov; Angeliki Thanasopoulou; Katharina Leonards; Katherine Louise Jones; Julia Meier; Heidi Olzscha; Octovia P. Monteiro; Sarah Martin; Martin Philpott; Anthony Tumber; Panagis Filippakopoulos; Clarence Yapp; Christopher Wells; Ka Hing Che; Andrew J. Bannister; Samuel Robson; Umesh Kumar; Nigel James Parr; Kevin Lee; Dave Lugo; Philip Jeffrey; Simon Taylor; Matteo Vecellio; C. Bountra; Paul E. Brennan; Alison O'Mahony; Sharlene Velichko; Susanne Müller; Duncan Hay

The histone acetyltransferases CBP/p300 are involved in recurrent leukemia-associated chromosomal translocations and are key regulators of cell growth. Therefore, efforts to generate inhibitors of CBP/p300 are of clinical value. We developed a specific and potent acetyl-lysine competitive protein-protein interaction inhibitor, I-CBP112, that targets the CBP/p300 bromodomains. Exposure of human and mouse leukemic cell lines to I-CBP112 resulted in substantially impaired colony formation and induced cellular differentiation without significant cytotoxicity. I-CBP112 significantly reduced the leukemia-initiating potential of MLL-AF9(+) acute myeloid leukemia cells in a dose-dependent manner in vitro and in vivo. Interestingly, I-CBP112 increased the cytotoxic activity of BET bromodomain inhibitor JQ1 as well as doxorubicin. Collectively, we report the development and preclinical evaluation of a novel, potent inhibitor targeting CBP/p300 bromodomains that impairs aberrant self-renewal of leukemic cells. The synergistic effects of I-CBP112 and current standard therapy (doxorubicin) as well as emerging treatment strategies (BET inhibition) provide new opportunities for combinatorial treatment of leukemia and potentially other cancers.


Journal of Medicinal Chemistry | 2013

Discovery of Novel Small-Molecule Inhibitors of BRD4 Using Structure-Based Virtual Screening.

Lewis R. Vidler; Panagis Filippakopoulos; Oleg Fedorov; Sarah Picaud; Sarah Martin; Michael Tomsett; Hannah Woodward; Nathan Brown; Stefan Knapp; Swen Hoelder

Bromodomains (BRDs) are epigenetic readers that recognize acetylated-lysine (KAc) on proteins and are implicated in a number of diseases. We describe a virtual screening approach to identify BRD inhibitors. Key elements of this approach are the extensive design and use of substructure queries to compile a set of commercially available compounds featuring novel putative KAc mimetics and docking this set for final compound selection. We describe the validation of this approach by applying it to the first BRD of BRD4. The selection and testing of 143 compounds lead to the discovery of six novel hits, including four unprecedented KAc mimetics. We solved the crystal structure of four hits, determined their binding mode, and improved their potency through synthesis and the purchase of derivatives. This work provides a validated virtual screening approach that is applicable to other BRDs and describes novel KAc mimetics that can be further explored to design more potent inhibitors.


Angewandte Chemie | 2014

A Series of Potent CREBBP Bromodomain Ligands Reveals an Induced-Fit Pocket Stabilized by a Cation–π Interaction

Timothy P. C. Rooney; Panagis Filippakopoulos; Oleg Fedorov; Sarah Picaud; Wilian A. Cortopassi; Duncan A. Hay; Sarah Martin; Anthony Tumber; Catherine Rogers; Martin Philpott; Minghua Wang; Amber L. Thompson; Tom D. Heightman; David C. Pryde; Andrew Simon Cook; Robert S. Paton; Susanne Müller; Stefan Knapp; Paul E. Brennan; Stuart J. Conway

The benzoxazinone and dihydroquinoxalinone fragments were employed as novel acetyl lysine mimics in the development of CREBBP bromodomain ligands. While the benzoxazinone series showed low affinity for the CREBBP bromodomain, expansion of the dihydroquinoxalinone series resulted in the first potent inhibitors of a bromodomain outside the BET family. Structural and computational studies reveal that an internal hydrogen bond stabilizes the protein-bound conformation of the dihydroquinoxalinone series. The side chain of this series binds in an induced-fit pocket forming a cation–π interaction with R1173 of CREBBP. The most potent compound inhibits binding of CREBBP to chromatin in U2OS cells.


Journal of Medicinal Chemistry | 2014

[1,2,4]triazolo[4,3-a]phthalazines: inhibitors of diverse bromodomains.

Oleg Fedorov; Hannah Lingard; Chris Wells; Octovia P. Monteiro; Sarah Picaud; T. Keates; Clarence Yapp; Martin Philpott; Sarah Martin; I. Felletar; Brian D. Marsden; Panagis Filippakopoulos; Susanne Müller; Stefan Knapp; Paul E. Brennan

Bromodomains are gaining increasing interest as drug targets. Commercially sourced and de novo synthesized substituted [1,2,4]triazolo[4,3-a]phthalazines are potent inhibitors of both the BET bromodomains such as BRD4 as well as bromodomains outside the BET family such as BRD9, CECR2, and CREBBP. This new series of compounds is the first example of submicromolar inhibitors of bromodomains outside the BET subfamily. Representative compounds are active in cells exhibiting potent cellular inhibition activity in a FRAP model of CREBBP and chromatin association. The compounds described are valuable starting points for discovery of selective bromodomain inhibitors and inhibitors with mixed bromodomain pharmacology.


MedChemComm | 2013

The design and synthesis of 5- and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains

Duncan Hay; Oleg Fedorov; Panagis Filippakopoulos; Sarah Martin; Martin Philpott; Sarah Picaud; David S. Hewings; Sagar Uttakar; Tom D. Heightman; Stuart J. Conway; Stefan Knapp; Paul E. Brennan

Simple 1-substituted 5- and 6-isoxazolyl-benzimidazoles have been shown to be potent inhibitors of the BET bromodomains with selectivity over the related bromodomain of CBP. The reported inhibitors were prepared from simple starting materials in two steps followed by separation of the regioisomers or regioselectively in three steps.


Science Advances | 2015

Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell maintenance.

Oleg Fedorov; Josefina Castex; Cynthia Tallant; Dafydd R. Owen; Sarah Martin; Matteo Aldeghi; Octovia P. Monteiro; Panagis Filippakopoulos; Sarah Picaud; John David Trzupek; Brian S. Gerstenberger; C. Bountra; Dominica Willmann; Christopher Wells; Martin Philpott; Catherine Rogers; Philip C. Biggin; Paul E. Brennan; Mark Edward Bunnage; Roland Schüle; Thomas Günther; Stefan Knapp; Susanne Müller

PFI-3, a novel inhibitor targeting the bromodomains of essential components of the BAF/PBAF complex, affects the differentiation of ESC and TSC. Mammalian SWI/SNF [also called Brg/Brahma-associated factors (BAFs)] are evolutionarily conserved chromatin-remodeling complexes regulating gene transcription programs during development and stem cell differentiation. BAF complexes contain an ATP (adenosine 5′-triphosphate)–driven remodeling enzyme (either BRG1 or BRM) and multiple protein interaction domains including bromodomains, an evolutionary conserved acetyl lysine–dependent protein interaction motif that recruits transcriptional regulators to acetylated chromatin. We report a potent and cell active protein interaction inhibitor, PFI-3, that selectively binds to essential BAF bromodomains. The high specificity of PFI-3 was achieved on the basis of a novel binding mode of a salicylic acid head group that led to the replacement of water molecules typically maintained in other bromodomain inhibitor complexes. We show that exposure of embryonic stem cells to PFI-3 led to deprivation of stemness and deregulated lineage specification. Furthermore, differentiation of trophoblast stem cells in the presence of PFI-3 was markedly enhanced. The data present a key function of BAF bromodomains in stem cell maintenance and differentiation, introducing a novel versatile chemical probe for studies on acetylation-dependent cellular processes controlled by BAF remodeling complexes.

Collaboration


Dive into the Sarah Martin's collaboration.

Top Co-Authors

Avatar

Stefan Knapp

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge