Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Meehan is active.

Publication


Featured researches published by Sarah Meehan.


Science | 2007

Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils

Tuomas P. J. Knowles; Anthony W. Fitzpatrick; Sarah Meehan; Helen R. Mott; Michele Vendruscolo; Christopher M. Dobson; Mark E. Welland

Protein molecules have the ability to form a rich variety of natural and artificial structures and materials. We show that amyloid fibrils, ordered supramolecular nanostructures that are self-assembled from a wide range of polypeptide molecules, have rigidities varying over four orders of magnitude, and constitute a class of high-performance biomaterials. We elucidate the molecular origin of fibril material properties and show that the major contribution to their rigidity stems from a generic interbackbone hydrogen-bonding network that is modulated by variable side-chain interactions.


Journal of the American Chemical Society | 2011

Metastability of native proteins and the phenomenon of amyloid formation.

Andrew J. Baldwin; Tuomas P. J. Knowles; Gian Gaetano Tartaglia; Anthony W. Fitzpatrick; Glyn L. Devlin; Sarah L. Shammas; Christopher A. Waudby; Maria F. Mossuto; Sarah Meehan; Sally L. Gras; John Christodoulou; Spencer J. Anthony-Cahill; Paul D. Barker; Michele Vendruscolo; Christopher M. Dobson

An experimental determination of the thermodynamic stabilities of a series of amyloid fibrils reveals that this structural form is likely to be the most stable one that protein molecules can adopt even under physiological conditions. This result challenges the conventional assumption that functional forms of proteins correspond to the global minima in their free energy surfaces and suggests that living systems are conformationally as well as chemically metastable.


The FASEB Journal | 2007

The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures

Justin J. Yerbury; Stephen Poon; Sarah Meehan; Brianna C. Thompson; Janet R. Kumita; Christopher M. Dobson; Mark R. Wilson

Clusterin is an extracellular chaperone present in all disease‐associated extracellular amyloid deposits, but its roles in amyloid formation and protein deposition in vivo are poorly understood. The current study initially aimed to characterize the effects of clusterin on amyloid formation in vitro by a panel of eight protein substrates. Two of the substrates (Alzheimers beta peptide and a PI3‐SH3 domain) were then used in further experiments to examine the effects of clusterin on amyloid cytotoxicity and to probe the mechanism of clusterin action. We show that clusterin exerts potent effects on amyloid formation, the nature and extent of which vary greatly with the clusterin: substrate ratio, and provide evidence that these effects are exerted via interactions with prefibrillar species that share common structural features. Proamyloido‐genic effects of clusterin appear to be restricted to conditions in which the substrate protein is present at a very large molar excess;under these same conditions, clusterin coincorporates with substrate protein into insoluble aggregates. However, when clusterin is present at much higher but still substoichiometric levels (e.g., a molar ratio of clusterin:substrate = 1:10), it potently inhibits amyloid formation and provides substantial cytoprotection. These findings suggest that clus‐terin is an important element in the control of extracellular protein misfolding.—Yerbury, J. J., Poon, S., Meehan, S., Thompson, B., Kumita, J. R., Dobson, C. M., Wilson, M. R. The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J. 21, 2312–2322 (2007)


Nature Structural & Molecular Biology | 2012

The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-β 1−40 peptide

Priyanka Narayan; Angel Orte; Richard W. Clarke; Benedetta Bolognesi; Sharon Hook; Kristina A. Ganzinger; Sarah Meehan; Mark R. Wilson; Christopher M. Dobson; David Klenerman

In recent genome-wide association studies, the extracellular chaperone protein, clusterin, has been identified as a newly-discovered risk factor in Alzheimers disease. We have examined the interactions between human clusterin and the Alzheimers disease–associated amyloid-β1−40 peptide (Aβ1−40), which is prone to aggregate into an ensemble of oligomeric intermediates implicated in both the proliferation of amyloid fibrils and in neuronal toxicity. Using highly sensitive single-molecule fluorescence methods, we have found that Aβ1−40 forms a heterogeneous distribution of small oligomers (from dimers to 50-mers), all of which interact with clusterin to form long-lived, stable complexes. Consequently, clusterin is able to influence both the aggregation and disaggregation of Aβ1−40 by sequestration of the Aβ oligomers. These results not only elucidate the protective role of clusterin but also provide a molecular basis for the genetic link between clusterin and Alzheimers disease.


Biochemical Journal | 2007

Mimicking phosphorylation of αB-crystallin affects its chaperone activity

Heath Ecroyd; Sarah Meehan; Joseph Horwitz; J. Andrew Aquilina; Justin L. P. Benesch; Carol V. Robinson; Cait E. MacPhee; John A. Carver

AlphaB-crystallin is a member of the sHsp (small heat-shock protein) family that prevents misfolded target proteins from aggregating and precipitating. Phosphorylation at three serine residues (Ser19, Ser45 and Ser59) is a major post-translational modification that occurs to alphaB-crystallin. In the present study, we produced recombinant proteins designed to mimic phosphorylation of alphaB-crystallin by incorporating a negative charge at these sites. We employed these mimics to undertake a mechanistic and structural investigation of the effect of phosphorylation on the chaperone activity of alphaB-crystallin to protect against two types of protein misfolding, i.e. amorphous aggregation and amyloid fibril assembly. We show that mimicking phosphorylation of alphaB-crystallin results in more efficient chaperone activity against both heat-induced and reduction-induced amorphous aggregation of target proteins. Mimick-ing phosphorylation increased the chaperone activity of alphaB-crystallin against one amyloid-forming target protein (kappa-casein), but decreased it against another (ccbeta-Trp peptide). We observed that both target protein identity and solution (buffer) conditions are critical factors in determining the relative chaperone ability of wild-type and phosphorylated alphaB-crystallins. The present study provides evidence for the regulation of the chaperone activity of alphaB-crystallin by phosphorylation and indicates that this may play an important role in alleviating the pathogenic effects associated with protein conformational diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass.

Tuomas P. J. Knowles; Wenmiao Shu; Glyn L. Devlin; Sarah Meehan; Stefan Auer; Christopher M. Dobson; Mark E. Welland

Aggregation of proteins and peptides is a widespread and much-studied problem, with serious implications in contexts ranging from biotechnology to human disease. An understanding of the proliferation of such aggregates under specific conditions requires a quantitative knowledge of the kinetics and thermodynamics of their formation; measurements that to date have remained elusive. Here, we show that precise determination of the growth rates of ordered protein aggregates such as amyloid fibrils can be achieved through real–time monitoring, using a quartz crystal oscillator, of the changes in the numbers of molecules in the fibrils from variations in their masses. We show further that this approach allows the effect of other molecular species on fibril growth to be characterized quantitatively. This method is widely applicable, and we illustrate its power by exploring the free-energy landscape associated with the conversion of the protein insulin to its amyloid form and elucidate the role of a chemical chaperone and a small heat shock protein in inhibiting the aggregation reaction.


Journal of Biological Chemistry | 2011

Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation

Beinan Liu; Aileen Moloney; Sarah Meehan; Kyle L. Morris; Sally E. Thomas; Louise C. Serpell; Robert C. Hider; Stefan J. Marciniak; David A. Lomas; Damian C. Crowther

We have previously shown that overexpressing subunits of the iron-binding protein ferritin can rescue the toxicity of the amyloid β (Aβ) peptide in our Drosophila model system. These data point to an important pathogenic role for iron in Alzheimer disease. In this study, we have used an iron-selective chelating compound and RNAi-mediated knockdown of endogenous ferritin to further manipulate iron in the brain. We confirm that chelation of iron protects the fly from the harmful effects of Aβ. To understand the pathogenic mechanisms, we have used biophysical techniques to see how iron affects Aβ aggregation. We find that iron slows the progression of the Aβ peptide from an unstructured conformation to the ordered cross-β fibrils that are characteristic of amyloid. Finally, using mammalian cell culture systems, we have shown that iron specifically enhances Aβ toxicity but only if the metal is present throughout the aggregation process. These data support the hypothesis that iron delays the formation of well ordered aggregates of Aβ and so promotes its toxicity in Alzheimer disease.


Biophysical Journal | 2010

The Interaction of αB-Crystallin with Mature α-Synuclein Amyloid Fibrils Inhibits Their Elongation

Christopher A. Waudby; Tuomas P. J. Knowles; Glyn L. Devlin; Jeremy N. Skepper; Heath Ecroyd; John A. Carver; Mark E. Welland; John Christodoulou; Christopher M. Dobson; Sarah Meehan

αB-Crystallin is a small heat-shock protein (sHsp) that is colocalized with α-synuclein (αSyn) in Lewy bodies—the pathological hallmarks of Parkinsons disease—and is an inhibitor of αSyn amyloid fibril formation in an ATP-independent manner in vitro. We have investigated the mechanism underlying the inhibitory action of sHsps, and here we establish, by means of a variety of biophysical techniques including immunogold labeling and nuclear magnetic resonance spectroscopy, that αB-crystallin interacts with αSyn, binding along the length of mature amyloid fibrils. By measurement of seeded fibril elongation kinetics, both in solution and on a surface using a quartz crystal microbalance, this binding is shown to strongly inhibit further growth of the fibrils. The binding is also demonstrated to shift the monomer-fibril equilibrium in favor of dissociation. We believe that this mechanism, by which a sHsp interacts with mature amyloid fibrils, could represent an additional and potentially generic means by which at least some chaperones protect against amyloid aggregation and limit the onset of misfolding diseases.


Cellular and Molecular Life Sciences | 2015

Small heat-shock proteins: important players in regulating cellular proteostasis

Teresa M. Treweek; Sarah Meehan; Heath Ecroyd; John A. Carver

Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease.


Journal of Molecular Biology | 2010

Structure and Properties of a Complex of Alpha-Synuclein and a Single-Domain Camelid Antibody.

Erwin De Genst; Tim Guilliams; Joke Wellens; Elizabeth ODay; Christopher A. Waudby; Sarah Meehan; Mireille Dumoulin; Shang-Te Danny Hsu; Nunilo Cremades; Koen H. Verschueren; Els Pardon; Lode Wyns; Jan Steyaert; John Christodoulou; Christopher M. Dobson

The aggregation of the intrinsically disordered protein α-synuclein to form fibrillar amyloid structures is intimately associated with a variety of neurological disorders, most notably Parkinsons disease. The molecular mechanism of α-synuclein aggregation and toxicity is not yet understood in any detail, not least because of the paucity of structural probes through which to study the behavior of such a disordered system. Here, we describe an investigation involving a single-domain camelid antibody, NbSyn2, selected by phage display techniques to bind to α-synuclein, including the exploration of its effects on the in vitro aggregation of the protein under a variety of conditions. We show using isothermal calorimetric methods that NbSyn2 binds specifically to monomeric α-synuclein with nanomolar affinity and by means of NMR spectroscopy that it interacts with the four C-terminal residues of the protein. This latter finding is confirmed by the determination of a crystal structure of NbSyn2 bound to a peptide encompassing the nine C-terminal residues of α-synuclein. The NbSyn2:α-synuclein interaction is mediated mainly by side-chain interactions while water molecules cross-link the main-chain atoms of α-synuclein to atoms of NbSyn2, a feature we believe could be important in intrinsically disordered protein interactions more generally. The aggregation behavior of α-synuclein at physiological pH, including the morphology of the resulting fibrillar structures, is remarkably unaffected by the presence of NbSyn2 and indeed we show that NbSyn2 binds strongly to the aggregated as well as to the soluble forms of α-synuclein. These results give strong support to the conjecture that the C-terminal region of the protein is not directly involved in the mechanism of aggregation and suggest that binding of NbSyn2 could be a useful probe for the identification of α-synuclein aggregation in vitro and possibly in vivo.

Collaboration


Dive into the Sarah Meehan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Carver

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Heath Ecroyd

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge