Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Netzel-Arnett is active.

Publication


Featured researches published by Sarah Netzel-Arnett.


Cancer and Metastasis Reviews | 2003

Membrane anchored serine proteases: A rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer

Sarah Netzel-Arnett; John D. Hooper; Roman Szabo; Edwin L. Madison; James P. Quigley; Thomas H. Bugge; Toni M. Antalis

Dysregulated proteolysis is a hallmark of cancer. Malignant cells require a range of proteolytic activities to enable growth, survival, and expansion. Serine proteases of the S1 or trypsin-like family have well recognized roles in the maintenance of normal homeostasis as well as in the pathology of diseases such as cancer. Recently a rapidly expanding subgroup of S1 proteases has been recognized that are directly anchored to plasma membranes. These membrane anchored serine proteases are anchored either via a carboxy-terminal transmembrane domain (Type I), a carboxy terminal hydrophobic region that functions as a signal for membrane attachment via a glycosyl-phosphatidylinositol linkage (GPI-anchored), or via an amino terminal proximal transmembrane domain (Type II or TTSP). The TTSPs also encode multiple domains in their stem regions that may function in regulatory interactions. The serine protease catalytic domains of these enzymes show high homology but also possess features indicating unique substrate specificities. It is likely that the membrane anchored serine proteases have evolved to perform complex functions in the regulation of cellular signaling events at the plasma membrane and within the extracellular matrix. Disruption or mutation of several of the genes encoding these proteases are associated with disease. Many of the membrane anchored serine proteases show restricted tissue distribution in normal cells, but their expression is widely dysregulated during tumor growth and progression. Diagnostic or therapeutic targeting of the membrane anchored serine proteases has potential as promising new approaches for the treatment of cancer and other diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2

Amit Tripathi; Karen M. Lammers; Simeon E. Goldblum; Terez Shea-Donohue; Sarah Netzel-Arnett; Marguerite S. Buzza; Toni M. Antalis; Stefanie N. Vogel; Aiping Zhao; Shiqi Yang; Marie-Claire Arrietta; Jon Meddings; Alessio Fasano

Increased intestinal permeability (IP) has emerged recently as a common underlying mechanism in the pathogenesis of allergic, inflammatory, and autoimmune diseases. The characterization of zonulin, the only physiological mediator known to regulate IP reversibly, has remained elusive. Through proteomic analysis of human sera, we have now identified human zonulin as the precursor for haptoglobin-2 (pre-HP2). Although mature HP is known to scavenge free hemoglobin (Hb) to inhibit its oxidative activity, no function has ever been ascribed to its uncleaved precursor form. We found that the single-chain zonulin contains an EGF-like motif that leads to transactivation of EGF receptor (EGFR) via proteinase-activated receptor 2 (PAR2) activation. Activation of these 2 receptors was coupled to increased IP. The siRNA-induced silencing of PAR2 or the use of PAR2−/− mice prevented loss of barrier integrity. Proteolytic cleavage of zonulin into its α2- and β-subunits neutralized its ability to both activate EGFR and increase IP. Quantitative gene expression revealed that zonulin is overexpressed in the intestinal mucosa of subjects with celiac disease. To our knowledge, this is the initial example of a molecule that exerts a biological activity in its precursor form that is distinct from the function of its mature form. Our results therefore characterize zonulin as a previously undescribed ligand that engages a key signalosome involved in the pathogenesis of human immune-mediated diseases that can be targeted for therapeutic interventions.


Journal of Biological Chemistry | 2006

Evidence for a Matriptase-Prostasin Proteolytic Cascade Regulating Terminal Epidermal Differentiation

Sarah Netzel-Arnett; Brooke M. Currie; Roman Szabo; Chen Yong Lin; Li-Mei Chen; Karl X. Chai; Toni M. Antalis; Thomas H. Bugge; Karin List

Recent gene ablation studies in mice have shown that matriptase, a type II transmembrane serine protease, and prostasin, a glycosylphosphatidylinositol-anchored membrane serine protease, are both required for processing of the epidermis-specific polyprotein, profilaggrin, stratum corneum formation, and acquisition of epidermal barrier function. Here we present evidence that matriptase acts upstream of prostasin in a zymogen activation cascade that regulates terminal epidermal differentiation and is required for prostasin zymogen activation. Enzymatic gene trapping of matriptase combined with prostasin immunohistochemistry revealed that matriptase was co-localized with prostasin in transitional layer cells of the epidermis and that the developmental onset of expression of the two membrane proteases was coordinated and correlated with acquisition of epidermal barrier function. Purified soluble matriptase efficiently converted soluble prostasin zymogen to an active two-chain form that formed SDS-stable complexes with the serpin protease nexin-1. Whereas two forms of prostasin with molecular weights corresponding to the prostasin zymogen and active prostasin were present in wild type epidermis, prostasin was exclusively found in the zymogen form in matriptase-deficient epidermis. These data suggest that matriptase, an autoactivating protease, acts upstream from prostasin to initiate a zymogen cascade that is essential for epidermal differentiation.


Journal of Cell Biology | 2003

uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

Lars H. Engelholm; Karin List; Sarah Netzel-Arnett; Edna Cukierman; David Mitola; Hannah Aaronson; Lars Kjøller; Jørgen K. Larsen; Kenneth M. Yamada; Dudley K. Strickland; Kenn Holmbeck; Keld Danø; Henning Birkedal-Hansen; Niels Behrendt; Thomas H. Bugge

The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor–associated protein (uPARAP)/Endo180, a novel mesenchymally expressed member of the macrophage mannose receptor family of endocytic receptors, is a key player in this process. Fibroblasts from mice with a targeted deletion in the uPARAP/Endo180 gene displayed a near to complete abrogation of collagen endocytosis. Furthermore, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine

Marguerite S. Buzza; Sarah Netzel-Arnett; Terez Shea-Donohue; Aiping Zhao; Chen Yong Lin; Karin List; Roman Szabo; Alessio Fasano; Thomas H. Bugge; Toni M. Antalis

The intestinal epithelium serves as a major protective barrier between the mammalian host and the external environment. Here we show that the transmembrane serine protease matriptase plays a pivotol role in the formation and integrity of the intestinal epithelial barrier. St14 hypomorphic mice, which have a 100-fold reduction in intestinal matriptase mRNA levels, display a 35% reduction in intestinal transepithelial electrical resistance (TEER). Matriptase is expressed during intestinal epithelial differentiation and colocalizes with E-cadherin to apical junctional complexes (AJC) in differentiated polarized Caco-2 monolayers. Inhibition of matriptase activity using a specific peptide inhibitor or by knockdown of matriptase by siRNA disrupts the development of TEER in barrier-forming Caco-2 monolayers and increases paracellular permeability to macromolecular FITC-dextran. Loss of matriptase was associated with enhanced expression and incorporation of the permeability-associated, “leaky” tight junction protein claudin-2 at intercellular junctions. Knockdown of claudin-2 enhanced the development of TEER in matriptase-silenced Caco-2 monolayers, suggesting that the reduced barrier integrity was caused, at least in part, by an inability to regulate claudin-2 expression and incorporation into junctions. We find that matriptase enhances the rate of claudin-2 protein turnover, and that this is mediated indirectly through an atypical PKCζ-dependent signaling pathway. These results support a key role for matriptase in regulating intestinal epithelial barrier competence, and suggest an intriguing link between pericellular serine protease activity and tight junction assembly in polarized epithelia.


Biochemical Journal | 2010

The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment.

Toni M. Antalis; Marguerite S. Buzza; Kathryn M. Hodge; John D. Hooper; Sarah Netzel-Arnett

The serine proteases of the trypsin-like (S1) family play critical roles in many key biological processes including digestion, blood coagulation, and immunity. Members of this family contain N- or C-terminal domains that serve to tether the serine protease catalytic domain directly to the plasma membrane. These membrane-anchored serine proteases are proving to be key components of the cell machinery for activation of precursor molecules in the pericellular microenvironment, playing vital functions in the maintenance of homoeostasis. Substrates activated by membrane-anchored serine proteases include peptide hormones, growth and differentiation factors, receptors, enzymes, adhesion molecules and viral coat proteins. In addition, new insights into our understanding of the physiological functions of these proteases and their involvement in human pathology have come from animal models and patient studies. The present review discusses emerging evidence for the diversity of this fascinating group of membrane serine proteases as potent modifiers of the pericellular microenvironment through proteolytic processing of diverse substrates. We also discuss the functional consequences of the activities of these proteases on mammalian physiology and disease.


Thrombosis and Haemostasis | 2003

Type II transmembrane serine proteases

Roman Szabo; Qingyu Wu; Robert B. Dickson; Sarah Netzel-Arnett; Toni M. Antalis; Thomas H. Bugge

The recent availability of human and mouse genome sequences and expressed sequence tag databases facilitated the identification of a large new family of membrane anchored serine proteases, the type II transmembrane serine proteases or TTSPs. Analyses of human inherited disorders and gene targeting studies in mice have revealed that several members of this new protease family have critical functions in development and health. Preliminary studies also suggest that aberrant expression of type II transmembrane serine proteases may be linked to disease progression. The knowledge gathered thus far of the genetics, physiology, and pathology of this interesting new serine protease family will be reviewed here in brief.


Laboratory Investigation | 2001

The urokinase plasminogen activator receptor-associated protein/endo180 is coexpressed with its interaction partners urokinase plasminogen activator receptor and matrix metalloprotease-13 during osteogenesis.

Lars H. Engelholm; Boye Schnack Nielsen; Sarah Netzel-Arnett; Helene Solberg; Xiao Dong Chen; José M. García; Carlos López-Otín; Marian Francis Young; Henning Birkedal-Hansen; Keld Danø; Leif R. Lund; Niels Behrendt; Thomas H. Bugge

The urokinase plasminogen activator receptor–associated protein/Endo180 (uPARAP/Endo180) is a newly discovered member of the macrophage mannose receptor family that was reported to interact with ligand-bound urokinase plasminogen activator receptor (uPAR), matrix metalloprotease-13 (MMP-13), and collagen V on the cell surface. We have determined the sites of expression of this novel receptor during murine postimplantation development. uPARAP/Endo180 was expressed in all tissues undergoing primary ossification, including the developing bones of the viscerocranium and calvarium that ossify intramembranously, and developing long bones undergoing endochondral ossification. uPARAP/Endo180 mRNA was expressed by both immature osteoblasts and by mature osteocalcin-producing osteoblasts-osteocytes, and was coexpressed with MMP-13. Interestingly, osteoblasts also expressed uPAR. Besides bone-forming tissues, uPARAP/Endo180 expression was detected only in a mesenchymal condensation of the midbrain and in the developing lungs. The data suggest a function of this novel protease receptor in bone development, possibly mediated through its interactions with uPAR, MMP-13, or collagen V.


Biochemical Journal | 2005

Matriptase-3 is a novel phylogenetically preserved membrane-anchored serine protease with broad serpin reactivity.

Roman Szabo; Sarah Netzel-Arnett; John P. Hobson; Toni M. Antalis; Thomas H. Bugge

We report in the present study the bioinformatic identification, molecular cloning and biological characterization of matriptase-3, a novel membrane-anchored serine protease that is phylogenetically preserved in fish, birds, rodents, canines and primates. The gene encoding matriptase-3 is located on syntenic regions of human chromosome 3q13.2, mouse chromosome 16B5, rat chromosome 11q21 and chicken chromosome 1. Bioinformatic analysis combined with cDNA cloning predicts a functional TTSP (type II transmembrane serine protease) with 31% amino acid identity with both matriptase/MT-SP1 and matriptase-2. This novel protease is composed of a short N-terminal cytoplasmic region followed by a transmembrane domain, a stem region with one SEA, two CUB and three LDLRa (low-density lipoprotein receptor domain class A) domains and a C-terminal catalytic serine protease domain. Transcript analysis revealed restricted, species-conserved expression of matriptase-3, with the highest mRNA levels in brain, skin, reproductive and oropharyngeal tissues. The full-length matriptase-3 cDNA directed the expression of a 90 kDa N-glycosylated protein that localized to the cell surface, as assessed by cell-surface biotin labelling. The purified activated matriptase-3 serine protease domain expressed in insect cells hydrolysed synthetic peptide substrates, with a strong preference for Arg at position P(1), and showed proteolytic activity towards several macromolecular substrates, including gelatin, casein and albumin. Interestingly, activated matriptase-3 formed stable inhibitor complexes with an array of serpins, including plasminogen activator inhibitor-1, protein C inhibitor, alpha1-proteinase inhibitor, alpha2-antiplasmin and antithrombin III. Our study identifies matriptase-3 as a novel biologically active TTSP of the matriptase subfamily having a unique expression pattern and post-translational regulation.


Cancer Research | 2008

SerpinB2 Protection of Retinoblastoma Protein from Calpain Enhances Tumor Cell Survival

Laura Tonnetti; Sarah Netzel-Arnett; Grant A. Darnell; Tamara Hayes; Marguerite S. Buzza; Ian E. Anglin; Andreas Suhrbier; Toni M. Antalis

The tumor suppressor retinoblastoma protein (Rb) plays a pivotal role in the regulation of cell proliferation and sensitivity to apoptosis through binding to E2F transcription factors. Loss of Rb in response to genotoxic stress or inflammatory cytokines can enhance cell death, in part, by eliminating Rb-mediated repression of proapoptotic gene transcription. Here we show that calpain cleavage of Rb facilitates Rb loss by proteasome degradation and that this may occur during tumor necrosis factor alpha-induced apoptosis. The cytoprotective, Rb-binding protein SerpinB2 (plasminogen activator inhibitor type 2) protects Rb from calpain cleavage, increasing Rb levels and enhancing cell survival. Chromatin immunoprecipitation assays show that the increased Rb levels selectively enhance Rb repression of proapoptotic gene transcription. This cytoprotective role of SerpinB2 is illustrated by reduced susceptibility of SerpinB2-deficient mice to multistage skin carcinogenesis, where Rb-dependent cell proliferation competes with apoptosis during initiation of papilloma development. These data identify SerpinB2 as a cell survival factor that modulates Rb repression of proapoptotic signal transduction and define a new posttranslational mechanism for selective regulation of the intracellular levels of Rb.

Collaboration


Dive into the Sarah Netzel-Arnett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aiping Zhao

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Thomas H. Bugge

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph F. Urban

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Rex Sun

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge