Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Oakley is active.

Publication


Featured researches published by Sarah Oakley.


Lancet Infectious Diseases | 2013

Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection

Tim Planche; Kerrie Davies; Pietro G Coen; John Finney; Irene M. Monahan; K. Morris; Lily O'Connor; Sarah Oakley; Cassie F Pope; Mike Wren; N. Shetty; Derrick W. Crook; Mark H. Wilcox

Summary Background Diagnosis of Clostridium difficile infection is controversial because of many laboratory methods, compounded by two reference methods. Cytotoxigenic culture detects toxigenic C difficile and gives a positive result more frequently (eg, because of colonisation, which means that individuals can have the bacterium but no free toxin) than does the cytotoxin assay, which detects preformed toxin in faeces. We aimed to validate the reference methods according to clinical outcomes and to derive an optimum laboratory diagnostic algorithm for C difficile infection. Methods In this prospective, multicentre study, we did cytotoxigenic culture and cytotoxin assays on 12 420 faecal samples in four UK laboratories. We also performed tests that represent the three main targets for C difficile detection: bacterium (glutamate dehydrogenase), toxins, or toxin genes. We used routine blood test results, length of hospital stay, and 30-day mortality to clinically validate the reference methods. Data were categorised by reference method result: group 1, cytotoxin assay positive; group 2, cytotoxigenic culture positive and cytotoxin assay negative; and group 3, both reference methods negative. Findings Clinical and reference assay data were available for 6522 inpatient episodes. On univariate analysis, mortality was significantly higher in group 1 than in group 2 (72/435 [16·6%] vs 20/207 [9·7%], p=0·044) and in group 3 (503/5880 [8·6%], p<0·001), but not in group 2 compared with group 3 (p=0·4). A multivariate analysis accounting for potential confounders confirmed the mortality differences between groups 1 and 3 (OR 1·61, 95% CI 1·12–2·31). Multistage algorithms performed better than did standalone assays. Interpretation We noted no increase in mortality when toxigenic C difficile alone was present. Toxin (cytotoxin assay) positivity correlated with clinical outcome, and so this reference method best defines true cases of C difficile infection. A new diagnostic category of potential C difficile excretor (cytotoxigenic culture positive but cytotoxin assay negative) could be used to characterise patients with diarrhoea that is probably not due to C difficile infection, but who can cause cross-infection. Funding Department of Health and Health Protection Agency, UK.


Clinical Infectious Diseases | 2013

Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection.

A. Sarah Walker; David W. Eyre; David H. Wyllie; Kate E. Dingle; David Griffiths; Brian Shine; Sarah Oakley; Lily O'Connor; John Finney; Alison Vaughan; Derrick W. Crook; Mark H. Wilcox; Tim Peto

Clostridium difficile genotype predicts 14-day mortality in 1893 enzyme immunoassay–positive/culture-positive adults. Excess mortality correlates with genotype-specific changes in biomarkers, strongly implicating inflammatory pathways as a major influence on poor outcome. Polymerase chain reaction ribotype 078/ST 11(clade 5) is associated with high mortality; ongoing surveillance remains essential.


Lancet Infectious Diseases | 2017

Effects of control interventions on Clostridium difficile infection in England: an observational study

Kate E. Dingle; Xavier Didelot; T Phuong Quan; David W. Eyre; Nicole Stoesser; Tanya Golubchik; Rosalind M. Harding; Daniel J. Wilson; David Griffiths; Alison Vaughan; John Finney; David H. Wyllie; Sarah Oakley; Warren N. Fawley; Jane Freeman; K. Morris; Jessica Martin; Philip Howard; Sherwood L. Gorbach; Ellie J. C. Goldstein; Diane M. Citron; Susan Hopkins; Russell Hope; Alan P. Johnson; Mark H. Wilcox; Tim Peto; A. Sarah Walker; Derrick W. Crook; Carlos del Ojo Elias; Charles Crichton

Summary Background The control of Clostridium difficile infections is an international clinical challenge. The incidence of C difficile in England declined by roughly 80% after 2006, following the implementation of national control policies; we tested two hypotheses to investigate their role in this decline. First, if C difficile infection declines in England were driven by reductions in use of particular antibiotics, then incidence of C difficile infections caused by resistant isolates should decline faster than that caused by susceptible isolates across multiple genotypes. Second, if C difficile infection declines were driven by improvements in hospital infection control, then transmitted (secondary) cases should decline regardless of susceptibility. Methods Regional (Oxfordshire and Leeds, UK) and national data for the incidence of C difficile infections and antimicrobial prescribing data (1998–2014) were combined with whole genome sequences from 4045 national and international C difficile isolates. Genotype (multilocus sequence type) and fluoroquinolone susceptibility were determined from whole genome sequences. The incidence of C difficile infections caused by fluoroquinolone-resistant and fluoroquinolone-susceptible isolates was estimated with negative-binomial regression, overall and per genotype. Selection and transmission were investigated with phylogenetic analyses. Findings National fluoroquinolone and cephalosporin prescribing correlated highly with incidence of C difficile infections (cross-correlations >0·88), by contrast with total antibiotic prescribing (cross-correlations <0·59). Regionally, C difficile decline was driven by elimination of fluoroquinolone-resistant isolates (approximately 67% of Oxfordshire infections in September, 2006, falling to approximately 3% in February, 2013; annual incidence rate ratio 0·52, 95% CI 0·48–0·56 vs fluoroquinolone-susceptible isolates: 1·02, 0·97–1·08). C difficile infections caused by fluoroquinolone-resistant isolates declined in four distinct genotypes (p<0·01). The regions of phylogenies containing fluoroquinolone-resistant isolates were short-branched and geographically structured, consistent with selection and rapid transmission. The importance of fluoroquinolone restriction over infection control was shown by significant declines in inferred secondary (transmitted) cases caused by fluoroquinolone-resistant isolates with or without hospital contact (p<0·0001) versus no change in either group of cases caused by fluoroquinolone-susceptible isolates (p>0·2). Interpretation Restricting fluoroquinolone prescribing appears to explain the decline in incidence of C difficile infections, above other measures, in Oxfordshire and Leeds, England. Antimicrobial stewardship should be a central component of C difficile infection control programmes. Funding UK Clinical Research Collaboration (Medical Research Council, Wellcome Trust, National Institute for Health Research); NIHR Oxford Biomedical Research Centre; NIHR Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance (Oxford University in partnership with Public Health England [PHE]), and on Modelling Methodology (Imperial College, London in partnership with PHE); and the Health Innovation Challenge Fund.


Journal of Clinical Microbiology | 2017

Molecular Diagnosis of Orthopedic-Device-Related Infection Directly from Sonication Fluid by Metagenomic Sequencing

Teresa Street; Nicholas D Sanderson; Bridget L. Atkins; Andrew J Brent; Kevin Cole; Dona Foster; Martin McNally; Sarah Oakley; Leon Peto; Adrian Taylor; Tim Peto; Derrick W. Crook; David W. Eyre

ABSTRACT Culture of multiple periprosthetic tissue samples is the current gold standard for microbiological diagnosis of prosthetic joint infections (PJI). Additional diagnostic information may be obtained through culture of sonication fluid from explants. However, current techniques can have relatively low sensitivity, with prior antimicrobial therapy and infection by fastidious organisms influencing results. We assessed if metagenomic sequencing of total DNA extracts obtained direct from sonication fluid can provide an alternative rapid and sensitive tool for diagnosis of PJI. We compared metagenomic sequencing with standard aerobic and anaerobic culture in 97 sonication fluid samples from prosthetic joint and other orthopedic device infections. Reads from Illumina MiSeq sequencing were taxonomically classified using Kraken. Using 50 derivation samples, we determined optimal thresholds for the number and proportion of bacterial reads required to identify an infection and confirmed our findings in 47 independent validation samples. Compared to results from sonication fluid culture, the species-level sensitivity of metagenomic sequencing was 61/69 (88%; 95% confidence interval [CI], 77 to 94%; for derivation samples 35/38 [92%; 95% CI, 79 to 98%]; for validation samples, 26/31 [84%; 95% CI, 66 to 95%]), and genus-level sensitivity was 64/69 (93%; 95% CI, 84 to 98%). Species-level specificity, adjusting for plausible fastidious causes of infection, species found in concurrently obtained tissue samples, and prior antibiotics, was 85/97 (88%; 95% CI, 79 to 93%; for derivation samples, 43/50 [86%; 95% CI, 73 to 94%]; for validation samples, 42/47 [89%; 95% CI, 77 to 96%]). High levels of human DNA contamination were seen despite the use of laboratory methods to remove it. Rigorous laboratory good practice was required to minimize bacterial DNA contamination. We demonstrate that metagenomic sequencing can provide accurate diagnostic information in PJI. Our findings, combined with the increasing availability of portable, random-access sequencing technology, offer the potential to translate metagenomic sequencing into a rapid diagnostic tool in PJI.


PLOS ONE | 2017

Epidemiology of Clostridium difficile in infants in Oxfordshire, UK: Risk factors for colonization and carriage, and genetic overlap with regional C. difficile infection strains

Nicole Stoesser; David W. Eyre; T Phuong Quan; Heather Godwin; Gemma Pill; Emily Mbuvi; Alison Vaughan; David Griffiths; Jessica Martin; Warren N. Fawley; Kate E. Dingle; Sarah Oakley; Kazimierz Wanelik; John Finney; Melina Kachrimanidou; Catrin E. Moore; Sherwood L. Gorbach; Thomas V. Riley; Derrick W. Crook; Tim Peto; Mark H. Wilcox; A. Sarah Walker

Background Approximately 30–40% of children <1 year of age are Clostridium difficile colonized, and may represent a reservoir for adult C. difficile infections (CDI). Risk factors for colonization with toxigenic versus non-toxigenic C. difficile strains and longitudinal acquisition dynamics in infants remain incompletely characterized. Methods Predominantly healthy infants (≤2 years) were recruited in Oxfordshire, UK, and provided ≥1 fecal samples. Independent risk factors for toxigenic/non-toxigenic C. difficile colonization and acquisition were identified using multivariable regression. Infant C. difficile isolates were whole-genome sequenced to assay genetic diversity and prevalence of toxin-associated genes, and compared with sequenced strains from Oxfordshire CDI cases. Results 338/365 enrolled infants provided 1332 fecal samples, representing 158 C. difficile colonization or carriage episodes (107[68%] toxigenic). Initial colonization was associated with age, and reduced with breastfeeding but increased with pet dogs. Acquisition was associated with older age, Caesarean delivery, and diarrhea. Breastfeeding and pre-existing C. difficile colonization reduced acquisition risk. Overall 13% of CDI C. difficile strains were genetically related to infant strains. 29(18%) infant C. difficile sequences were consistent with recent direct/indirect transmission to/from Oxfordshire CDI cases (≤2 single nucleotide variants [SNVs]); 79(50%) shared a common origin with an Oxfordshire CDI case within the last ~5 years (0–10 SNVs). The hypervirulent, epidemic ST1/ribotype 027 remained notably absent in infants in this large study, as did other lineages such as STs 10/44 (ribotype 015); the most common strain in infants was ST2 (ribotype 020/014)(22%). Conclusions In predominantly healthy infants without significant healthcare exposure C. difficile colonization and acquisition reflect environmental exposures, with pet dogs identified as a novel risk factor. Genetic overlap between some infant strains and those isolated from CDI cases suggest common community reservoirs of these C. difficile lineages, contrasting with those lineages found only in CDI cases, and therefore more consistent with healthcare-associated spread.


PLOS Medicine | 2012

Surveillance of infection severity: a registry study of laboratory diagnosed Clostridium difficile.

Iryna Schlackow; A. Sarah Walker; Kate E. Dingle; David Griffiths; Sarah Oakley; John Finney; Ali Vaughan; Martin J. Gill; Derrick W. Crook; Tim Peto; David H. Wyllie

Iryna Schlackow and colleagues investigated whether electronic systems providing early warning of changing severity of infectious conditions can be established using routinely collected laboratory hospital data. They showed that for Clostridium difficile infection, these systems perform better than those monitoring mortality.


Journal of Medical Microbiology | 2018

DNA extraction from primary liquid blood cultures for bloodstream infection diagnosis using whole genome sequencing

Luke Anson; Kevin Chau; Nicholas D Sanderson; Sarah J. Hoosdally; Phelim Bradley; Zamin Iqbal; Hang Phan; Dona Foster; Sarah Oakley; Marcus Morgan; Tim Peto; Derrick W. Crook; Louise Pankhurst

Purpose. Speed of bloodstream infection diagnosis is vital to reduce morbidity and mortality. Whole genome sequencing (WGS) performed directly from liquid blood culture could provide single‐assay species and antibiotic susceptibility prediction; however, high inhibitor and human cell/DNA concentrations limit pathogen recovery. We develop a method for the preparation of bacterial DNA for WGS‐based diagnostics direct from liquid blood culture. Methodology. We evaluate three commercial DNA extraction kits: BiOstic Bacteraemia, Amplex Hyplex and MolYsis Plus. Differential centrifugation, filtration, selective lysis and solid‐phase reversible immobilization bead clean‐up are tested to improve human cells/DNA and inhibitor removal. Using WGS (Illumina/MinION), we assess human DNA removal, pathogen recovery, and predict species and antibiotic susceptibility inpositive blood cultures of 44 Gram‐negative and 54 Staphylococcus species. Results/Key findings. BiOstic kit extractions yield the greatest mean DNA concentration, 94‐301 ng &mgr;l−1, versus 0‐2.5 ng &mgr;l−1 using Amplex and MolYsis kits. However, we note higher levels of inhibition (260/280 ratio 0.9‐2.1) and human DNA (0.0‐4.4×106 copies) in BiOstic extracts. Differential centrifugation (2000 g, 1 min) prior to BiOstic extraction reduces human DNA by 63‐89 % with selective lysis minimizing by a further 62 %. Post‐extraction bead clean‐up lowers inhibition. Overall, 67 % of sequenced samples (Illumina MiSeq) contain <10 % human DNA, with >93 % concordance between WGS‐based species and susceptibility predictions and clinical diagnosis. If >60 % of sequencing reads are human (7/98 samples) susceptibility prediction becomes compromised. Novel MinION‐based WGS (n=9) currently gives rapid species identification but not susceptibility prediction. Conclusion. Our method for DNA preparation allows WGS‐based diagnosis direct from blood culture bottles, providing species and antibiotic susceptibility prediction in a single assay.


Lancet Infectious Diseases | 2018

Trends over time in Escherichia coli bloodstream infections, urinary tract infections, and antibiotic susceptibilities in Oxfordshire, UK, 1998–2016: a study of electronic health records

Karina-Doris Vihta; Nicole Stoesser; Martin Llewelyn; T Phuong Quan; Tim Davies; Nicola J Fawcett; Laura Dunn; Katie Jeffery; Christopher Collett Butler; Gail Hayward; Monique Andersson; Marcus Morgan; Sarah Oakley; Amy Mason; Susan Hopkins; David H. Wyllie; Derrick W. Crook; Mark H. Wilcox; Alan P. Johnson; Tim Peto; A. Sarah Walker

BACKGROUND Escherichia coli bloodstream infections are increasing in the UK and internationally. The evidence base to guide interventions against this major public health concern is small. We aimed to investigate possible drivers of changes in the incidence of E coli bloodstream infection and antibiotic susceptibilities in Oxfordshire, UK, over the past two decades, while stratifying for time since hospital exposure. METHODS In this observational study, we used all available data on E coli bloodstream infections and E coli urinary tract infections (UTIs) from one UK region (Oxfordshire) using anonymised linked microbiological data and hospital electronic health records from the Infections in Oxfordshire Research Database (IORD). We estimated the incidence of infections across a two decade period and the annual incidence rate ratio (aIRR) in 2016. We modelled the data using negative binomial regression on the basis of microbiological, clinical, and health-care-exposure risk factors. We investigated infection severity, 30-day all-cause mortality, and community and hospital amoxicillin plus clavulanic acid (co-amoxiclav) use to estimate changes in bacterial virulence and the effect of antimicrobial resistance on incidence. FINDINGS From Jan 1, 1998, to Dec 31, 2016, 5706 E coli bloodstream infections occurred in 5215 patients, and 228 376 E coli UTIs occurred in 137 075 patients. 1365 (24%) E coli bloodstream infections were nosocomial (onset >48 h after hospital admission), 1132 (20%) were quasi-nosocomial (≤30 days after discharge), 1346 (24%) were quasi-community (31-365 days after discharge), and 1863 (33%) were community (>365 days after hospital discharge). The overall incidence increased year on year (aIRR 1·06, 95% CI 1·05-1·06). In 2016, 212 (41%) of 515 E coli bloodstream infections and 3921 (28%) of 13 792 E coli UTIs were co-amoxiclav resistant. Increases in E coli bloodstream infections were driven by increases in community (aIRR 1·10, 95% CI 1·07-1·13; p<0·0001) and quasi-community (aIRR 1·08, 1·07-1·10; p<0·0001) cases. 30-day mortality associated with E coli bloodstream infection decreased over time in the nosocomial (adjusted rate ratio [RR] 0·98, 95% CI 0·96-1·00; p=0·03) group, and remained stable in the quasi-nosocomial (adjusted RR 0·98, 0·95-1·00; p=0·06), quasi-community (adjusted RR 0·99, 0·96-1·01; p=0·32), and community (adjusted RR 0·99, 0·96-1·01; p=0·21) groups. Mortality was, however, substantial at 14-25% across all hospital-exposure groups. Co-amoxiclav-resistant E coli bloodstream infections increased in all groups across the study period (by 11-18% per year, significantly faster than co-amoxiclav-susceptible E coli bloodstream infections; pheterogeneity<0·0001), as did co-amoxiclav-resistant E coli UTIs (by 14-29% per year; pheterogeneity<0·0001). Previous year co-amoxiclav use in primary-care facilities was associated with increased subsequent year community co-amoxiclav-resistant E coli UTIs (p=0·003). INTERPRETATION Increases in E coli bloodstream infections in Oxfordshire are primarily community associated, with substantial co-amoxiclav resistance; nevertheless, we found little or no change in mortality. Focusing interventions on primary care facilities, particularly those with high co-amoxiclav use, could be effective in reducing the incidence of co-amoxiclav-resistant E coli bloodstream infections, in this region and more generally. FUNDING National Institute for Health Research.


bioRxiv | 2017

Real-time analysis of nanopore-based metagenomic sequencing from orthopaedic device infection

Nicholas D Sanderson; Teresa Street; Dona Foster; Jeremy Swann; Bridget L. Atkins; Andrew J Brent; Martin McNally; Sarah Oakley; Adrian Taylor; Tim Peto; Derrick W. Crook; David W. Eyre

Prosthetic joint infections are clinically difficult to diagnose and treat. Previously, we demonstrated metagenomic sequencing on an Illumina MiSeq replicates the findings of current gold standard microbiological diagnostic techniques. Nanopore sequencing offers advantages in speed of detection over MiSeq. Here, we compare direct-from-clinical-sample metagenomic Illumina sequencing with Nanopore sequencing, and report a real-time analytical pathway for Nanopore sequence data, designed for detecting bacterial composition of prosthetic joint infections. DNA was extracted from the sonication fluids of seven explanted orthopaedic devices, and additionally from two culture negative controls, and was sequenced on the Oxford Nanopore Technologies MinION platform. A specific analysis pipeline was assembled to overcome the challenges of identifying the true infecting pathogen, given high levels of host contamination and unavoidable background lab and kit contamination. The majority of DNA classified (>90%) was host contamination and discarded. Using negative control filtering thresholds, the species identified corresponded with both routine microbiological diagnosis and MiSeq results. By analysing sequences in real time, causes of infection were robustly detected within minutes from initiation of sequencing. We demonstrate initial proof of concept that metagenomic MinION sequencing can provide rapid, accurate diagnosis for prosthetic joint infections. We demonstrate a novel, scalable pipeline for real-time analysis of MinION sequence data. The high proportion of human DNA in extracts prevents full genome analysis from complete coverage, and methods to reduce this could increase genome depth and allow antimicrobial resistance profiling.


BMC Genomics | 2018

Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices

Nicholas D Sanderson; Teresa Street; Dona Foster; Jeremy Swann; Bridget L. Atkins; Andrew J Brent; Martin McNally; Sarah Oakley; Adrian Taylor; Tim Peto; Derrick W. Crook; David W. Eyre

BackgroundProsthetic joint infections are clinically difficult to diagnose and treat. Previously, we demonstrated metagenomic sequencing on an Illumina MiSeq replicates the findings of current gold standard microbiological diagnostic techniques. Nanopore sequencing offers advantages in speed of detection over MiSeq. Here, we report a real-time analytical pathway for Nanopore sequence data, designed for detecting bacterial composition of prosthetic joint infections but potentially useful for any microbial sequencing, and compare detection by direct-from-clinical-sample metagenomic nanopore sequencing with Illumina sequencing and standard microbiological diagnostic techniques.ResultsDNA was extracted from the sonication fluids of seven explanted orthopaedic devices, and additionally from two culture negative controls, and was sequenced on the Oxford Nanopore Technologies MinION platform. A specific analysis pipeline was assembled to overcome the challenges of identifying the true infecting pathogen, given high levels of host contamination and unavoidable background lab and kit contamination.The majority of DNA classified (> 90%) was host contamination and discarded. Using negative control filtering thresholds, the species identified corresponded with both routine microbiological diagnosis and MiSeq results. By analysing sequences in real time, causes of infection were robustly detected within minutes from initiation of sequencing.ConclusionsWe demonstrate a novel, scalable pipeline for real-time analysis of MinION sequence data and use of this pipeline to show initial proof of concept that metagenomic MinION sequencing can provide rapid, accurate diagnosis for prosthetic joint infections. The high proportion of human DNA in prosthetic joint infection extracts prevents full genome analysis from complete coverage, and methods to reduce this could increase genome depth and allow antimicrobial resistance profiling. The nine samples sequenced in this pilot study have shown a proof of concept for sequencing and analysis that will enable us to investigate further sequencing to improve specificity and sensitivity.

Collaboration


Dive into the Sarah Oakley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Peto

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Taylor

Nuffield Orthopaedic Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Finney

John Radcliffe Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge