Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah T. Gille is active.

Publication


Featured researches published by Sarah T. Gille.


Journal of Climate | 2008

Decadal-Scale Temperature Trends in the Southern Hemisphere Ocean

Sarah T. Gille

Long-term trends in the heat content of the Southern Hemisphere ocean are evaluated by comparing temperature profiles collected during the 1990s with profiles collected starting in the 1930s. Data are drawn both from ship-based hydrographic surveys and from autonomous floats. Results show that the upper 1000 m of the Southern Hemisphere ocean has warmed substantially during this time period at all depths. Warming is concentrated within the Antarctic Circumpolar Current (ACC). On a global scale, this warming trend implies that the ocean has gained heat from the atmosphere over the last 50 to 70 years. Although the data do not preclude the possibility that the Southern Ocean has warmed as a result of increased heat fluxes, either into the ocean or within the ocean, in general the strong trend in the Southern Ocean appears regionally consistent with a poleward migration of the ACC, possibly driven by long-term poleward shifts in the winds of the region, as represented by the southern annular mode.


Journal of Geophysical Research | 1994

Mean sea surface height of the Antarctic Circumpolar Current from Geosat data: Method and application

Sarah T. Gille

The mean sea surface height across the Antarctic Circumpolar Current has been reconstructed from height variability measured by the Geosat altimeter without assuming prior knowledge of the geoid. For this study, an automated technique has been developed to estimate mean sea surface height for each satellite ground track using a meandering Gaussian jet model, and errors have been estimated using Monte Carlo simulation. The results are objectively mapped to produce a picture of the mean Subantarctic and Polar Fronts, which together comprise the major components of the Antarctic Circumpolar Current. The meandering jet model explains between 40% and 70% of the height variance along the jet axes. The results show that the fronts are substantially steered by topography and that the jets have an average Gaussian width of about 44 km in the meridional direction and meander about 75 km to either side of their mean locations. The average height difference across the Subantarctic Front (SAF) is 0.7 m and across the Polar Front (PF) 0.6 m. The mean widths of the fronts are correlated with the size of the baroclinic Rossby radius.


Geophysical Research Letters | 2007

Eddies enhance biological production in the Weddell‐Scotia Confluence of the Southern Ocean

Mati Kahru; B. G. Mitchell; Sarah T. Gille; Christopher D. Hewes; Osmund Holm-Hansen

Satellite data show that oceanic eddies generated in the Southern Antarctic Circumpolar Current Front (SACCF) are associated with increased phytoplankton biomass. Cyclonic eddies with high chlorophyll a concentration (Chl-a) retain phytoplankton within the eddy cores and increase the light available for photosynthesis in the upper mixed layer by limiting vertical mixing and lifting of the isopycnal surfaces. Anticyclonic eddies have low Chl-a in the core but increased Chl-a in the periphery. Cross-frontal mixing mediated by eddies transports nutrients (e.g., Fe and Si) to the north and contributes to the increased Chl-a in the frontal zone. Interannual variations in the cyclonic eddy activity are positively correlated with variations in Chl-a during the spring bloom in regions of the Antarctic Circumpolar Current around South Georgia.


Journal of Physical Oceanography | 2006

Location of the Antarctic Polar Front from AMSR-E Satellite Sea Surface Temperature Measurements

Shenfu Dong; Janet Sprintall; Sarah T. Gille

Abstract The location of the Southern Ocean polar front (PF) is mapped from the first 3 yr of remotely sensed Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature (SST) measurements. In agreement with previous studies, the mean path of the Antarctic PF and its standard deviation are strongly influenced by bottom topography. However, the mean PF path diverges slightly from previous studies in several regions where there is high mesoscale variability. Although the SST and SST gradient at the PF show spatially coherent seasonal variations, with the highest temperature and the lowest temperature gradient during summer, the seasonal variations in the location of the PF are not spatially coherent. The temporal mean SST at the PF corresponds well to the mean PF path: the temperature is high in the Atlantic and Indian Ocean sections and is low in the Pacific Ocean section where the PF has a more southerly position. The relationship of the wind field with the Antar...


Journal of Physical Oceanography | 1997

The Southern Ocean Momentum Balance: Evidence for Topographic Effects from Numerical Model Output and Altimeter Data

Sarah T. Gille

Abstract The momentum balance of the Antarctic Circumpolar Current is investigated using both output from a high-resolution primitive equation model and sea surface height measurements from the Geosat altimeter. In the Semtner–Chervin general circulation model, run with approximately one-quarter degree resolution and time-varying ECMWF winds, topographic form stress is the dominant process balancing the surface wind forcing. Detailed examination of form stress in the model indicates that it is due to three large topographic obstructions located at Kerguelen Island, Campbell Plateau, and Drake Passage. The difference between wind stress and form stress represents the lateral transfer of momentum into and out of the ACC. It is examined both in zonal coordinates to conform to the model architecture and along mean streamlines in order to reduce the effects of standing eddies. In this particular model, in stream coordinates, biharmonic friction dominates the lateral transfer of momentum. Since biharmonic frict...


Journal of Climate | 2007

An Assessment of the Southern Ocean Mixed Layer Heat Budget

Shenfu Dong; Sarah T. Gille; Janet Sprintall

The mixed layer heat balance in the Southern Ocean is examined by combining remotely sensed measurements and in situ observations from 1 June 2002 to 31 May 2006, coinciding with the period during which Advanced Microwave Scanning Radiometer-Earth Observing System (EOS) (AMSR-E) sea surface temperature measurements are available. Temperature/salinity profiles from Argo floats are used to derive the mixed layer depth. All terms in the heat budget are estimated directly from available data. The domain-averaged terms of oceanic heat advection, entrainment, diffusion, and air–sea flux are largely consistent with the evolution of the mixed layer temperature. The mixed layer temperature undergoes a strong seasonal cycle, which is largely attributed to the air–sea heat fluxes. Entrainment plays a secondary role. Oceanic advection also experiences a seasonal cycle, although it is relatively weak. Most of the seasonal variations in the advection term come from the Ekman advection, in contrast with western boundary current regions where geostrophic advection controls the total advection. Substantial imbalances exist in the regional heat budgets, especially near the northern boundary of the Antarctic Circumpolar Current. The biggest contributor to the surface heat budget error is thought to be the air–sea heat fluxes, because only limited Southern Hemisphere data are available for the reanalysis products, and hence these fluxes have large uncertainties. In particular, the lack of in situ measurements during winter is of fundamental concern. Sensitivity tests suggest that a proper representation of the mixed layer depth is important to close the budget. Salinity influences the stratification in the Southern Ocean; temperature alone provides an imperfect estimate of mixed layer depth and, because of this, also an imperfect estimate of the temperature of water entrained into the mixed layer from below.


Journal of Physical Oceanography | 2003

Float Observations of the Southern Ocean. Part I: Estimating Mean Fields, Bottom Velocities, and Topographic Steering

Sarah T. Gille

Abstract Autonomous Lagrangian Circulation Explorer (ALACE) floats are used to examine mean flow and eddy fluxes at 900-m depth in the Southern Ocean. Mean temperature and dynamic topography from float data are consistent with earlier estimates from hydrographic surveys, although floats imply warmer temperatures and narrower frontal structures than do atlas data. Differences between hydrographic and ALACE dynamic topography suggest the presence of eastward bottom velocities of about 2 cm s−1 below the eastward-flowing jets of the Antarctic Circumpolar Current. Flow is steered by bathymetry and can be represented as an equivalent barotropic system with an e-folding depth of about 700 m.


Bulletin of the American Meteorological Society | 2013

High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research

Mark A. Bourassa; Sarah T. Gille; Cecilia M. Bitz; David J. Carlson; Ivana Cerovecki; Carol Anne Clayson; Meghan F. Cronin; Will M. Drennan; Christopher W. Fairall; Ross N. Hoffman; Gudrun Magnusdottir; Rachel T. Pinker; Ian A. Renfrew; Mark C. Serreze; Kevin G. Speer; Lynne D. Talley; Gary A. Wick

Polar regions have great sensitivity to climate forcing; however, understanding of the physical processes coupling the atmosphere and ocean in these regions is relatively poor. Improving our knowledge of high-latitude surface fluxes will require close collaboration among meteorologists, oceanographers, ice physicists, and climatologists, and between observationalists and modelers, as well as new combinations of in situ measurements and satellite remote sensing. This article describes the deficiencies in our current state of knowledge about air–sea surface fluxes in high latitudes, the sensitivity of various high-latitude processes to changes in surface fluxes, and the scientific requirements for surface fluxes at high latitudes. We inventory the reasons, both logistical and physical, why existing flux products do not meet these requirements. Capturing an annual cycle in fluxes requires that instruments function through long periods of cold polar darkness, often far from support services, in situations subject to icing and extreme wave conditions. Furthermore, frequent cloud cover at high latitudes restricts the availability of surface and atmospheric data from visible and infrared (IR) wavelength satellite sensors. Recommendations are made for improving high-latitude fluxes, including 1) acquiring more in situ observations, 2) developing improved satellite-flux-observing capabilities, 3) making observations and flux products more accessible, and 4) encouraging flux intercomparisons.


Journal of Physical Oceanography | 2003

Float Observations of the Southern Ocean. Part II: Eddy Fluxes

Sarah T. Gille

Abstract Autonomous Lagrangian Circulation Explorer (ALACE) floats are used to examine eddy fluxes in the Southern Ocean. Eddy fluxes are calculated from differences between ALACE float data and mean fields derived from hydrographic atlas data or objectively mapped float observations. Heat fluxes indicate an average poleward eddy heat transport across the Antarctic Circumpolar Current (ACC) of about 3–7 kW m−2 at 900-m depth. Because analysis of current meter data suggests that ALACEs 9–25-day averaging underestimates the total heat flux, the initial ALACE estimates are rescaled to account for this undersampling. This results in a total corrected heat flux of 5–10 kW m−2 at 900 m, depending on the mean field used for the calculations. If the cross-ACC heat flux is assumed to vary exponentially through the water column with an e-folding depth of 1000 m, then the implied net poleward heat flux across the ACC is between 0.3 ± 0.1 and 0.6 ± 0.3 (×1015 W). These estimates are in agreement with previous Southe...


Journal of Geophysical Research | 2015

Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer

Magdalena M. Carranza; Sarah T. Gille

Despite being the largest High Nitrate Low Chlorophyll (HNLC) region, the Southern Ocean sustains phytoplankton blooms through the summer, when presumably there is sufficient light, but nutrients in the euphotic zone have been depleted. Physical processes that can potentially supply nutrients from subsurface waters to the euphotic zone, and promote phytoplankton growth in the summer, have not been fully explored at the large scale. By means of a correlation analysis, this study combines high-resolution satellite observations of ocean color, winds and sea surface temperature, surface heat fluxes from reanalysis and Argo mixed-layer depth (MLD) estimates to explore the role of the atmospheric forcing (i.e., winds and surface heat fluxes) on upper ocean processes that may help sustain high satellite chlorophyll-a (Chl-a) through the summer. Two physical processes that can supply nutrients to the euphotic zone are: MLD deepening, caused by wind-mixing and/or surface cooling, and Ekman pumping driven by the wind stress curl. We find that high winds correlate with high Chl-a over broad open ocean areas, suggesting that transient MLD deepening through wind-mixing (i.e., wind-driven entrainment) helps sustain high Chl-a. Wind-driven entrainment plays a dominant role on time scales associated with atmospheric synoptic storms (i.e., <10 days) and has a larger influence on surface Chl-a than storm scale local Ekman pumping. Based on our analysis of statistically significant correlation patterns, we identify regions in the Southern Ocean where wind-induced entrainment may play a role in sustaining summer phytoplankton blooms.

Collaboration


Dive into the Sarah T. Gille's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexa Griesel

University of California

View shared research outputs
Top Co-Authors

Avatar

Julie L. McClean

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar

Kyla Drushka

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilbert Weijer

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kevin G. Speer

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cesar B. Rocha

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge