Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Whalley is active.

Publication


Featured researches published by Sarah Whalley.


Antimicrobial Agents and Chemotherapy | 2015

Pharmacodynamics of Fosfomycin: Insights into Clinical Use for Antimicrobial Resistance

Fernando Docobo-Pérez; George L. Drusano; Adam Johnson; Joanne Goodwin; Sarah Whalley; V. Ramos-Martín; Mónica Ballestero-Téllez; J. M. Rodríguez-Martínez; M. C. Conejo; M. Van Guilder; Jesús Rodríguez-Baño; Álvaro Pascual; William W. Hope

ABSTRACT The aim of this study was to improve the understanding of the pharmacokinetic-pharmacodynamic relationships of fosfomycin against extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains that have different fosfomycin MICs. Our methods included the use of a hollow fiber infection model with three clinical ESBL-producing E. coli strains. Human fosfomycin pharmacokinetic profiles were simulated over 4 days. Preliminary studies conducted to determine the dose ranges, including the dose ranges that suppressed the development of drug-resistant mutants, were conducted with regimens from 12 g/day to 36 g/day. The combination of fosfomycin at 4 g every 8 h (q8h) and meropenem at 1 g/q8h was selected for further assessment. The total bacterial population and the resistant subpopulations were determined. No efficacy was observed against the Ec42444 strain (fosfomycin MIC, 64 mg/liter) at doses of 12, 24, or 36 g/day. All dosages induced at least initial bacterial killing against Ec46 (fosfomycin MIC, 1 mg/liter). High-level drug-resistant mutants appeared in this strain in response to 12, 15, and 18 g/day. In the study arms that included 24 g/day, once or in a divided dose, a complete extinction of the bacterial inoculum was observed. The combination of meropenem with fosfomycin was synergistic for bacterial killing and also suppressed all fosfomycin-resistant clones of Ec2974 (fosfomycin MIC, 1 mg/liter). We conclude that fosfomycin susceptibility breakpoints (≤64 mg/liter according to CLSI [for E. coli urinary tract infections only]) should be revised for the treatment of serious systemic infections. Fosfomycin can be used to treat infections caused by organisms that demonstrate lower MICs and lower bacterial densities, although relatively high daily dosages (i.e., 24 g/day) are required to prevent the emergence of bacterial resistance. The ratio of the area under the concentration-time curve for the free, unbound fraction of fosfomycin versus the MIC (fAUC/MIC) appears to be the dynamically linked index of suppression of bacterial resistance. Fosfomycin with meropenem can act synergistically against E. coli strains in preventing the emergence of fosfomycin resistance.


Clinical Pharmacology & Therapeutics | 2014

Pulmonary Penetration of Piperacillin and Tazobactam in Critically Ill Patients

Timothy W. Felton; K. McCalman; Isaac B Malagon; Barbara J Isalska; Sarah Whalley; Joanne Goodwin; Andrew Bentley; W B Hope

Pulmonary infections in critically ill patients are common and are associated with high morbidity and mortality. Piperacillin–tazobactam is a frequently used therapy in critically ill patients with pulmonary infection. Antibiotic concentrations in the lung reflect target‐site antibiotic concentrations in patients with pneumonia. The aim of this study was to assess the plasma and intrapulmonary pharmacokinetics (PK) of piperacillin–tazobactam in critically ill patients administered standard piperacillin–tazobactam regimens. A population PK model was developed to describe plasma and intrapulmonary piperacillin and tazobactam concentrations. The probability of piperacillin exposures reaching pharmacodynamic end points and the impact of pulmonary permeability on piperacillin and tazobactam pulmonary penetration was explored. The median piperacillin and tazobactam pulmonary penetration ratios were 49.3 and 121.2%, respectively. Pulmonary piperacillin and tazobactam concentrations were unpredictable and negatively correlated with pulmonary permeability. Current piperacillin–tazobactam regimens may be insufficient to treat pneumonia caused by piperacillin–tazobactam–susceptible organisms in some critically ill patients.


Journal of Antimicrobial Chemotherapy | 2016

Pharmacodynamics of vancomycin for CoNS infection: experimental basis for optimal use of vancomycin in neonates

V. Ramos-Martín; Adam Johnson; Laura McEntee; Joanne Goodwin; Sarah Whalley; Fernando Docobo-Pérez; Tim Felton; Wei Zhao; Evelyne Jacqz-Aigrain; Mike Sharland; Mark A. Turner; William W. Hope

OBJECTIVES CoNS are the most common cause of neonatal late-onset sepsis. Information on the vancomycin pharmacokinetics/pharmacodynamics against CoNS is limited. The aim of this study was to characterize vancomycin pharmacokinetic/pharmacodynamic relationships for CoNS and investigate neonatal optimal dosage regimens. METHODS A hollow fibre and a novel rabbit model of neonatal central line-associated bloodstream CoNS infections were developed. The results were then bridged to neonates by use of population pharmacokinetic techniques and Monte Carlo simulations. RESULTS There was a dose-dependent reduction in the total bacterial population and C-reactive protein levels. The AUC/MIC and Cmax/MIC ratios were strongly linked with total and mutant resistant cell kill. Maximal amplification of resistance was observed in vitro at an fAUC/MIC of 200 mg · h/L. Simulations predicted that neonates <29 weeks post-menstrual age are underdosed with standard regimens with respect to older age groups. CONCLUSIONS The AUC/MIC and Cmax/MIC ratios are the pharmacodynamic indices that best explain total and resistant cell kill in CoNS infection. This suggests that less-fractionated regimens are appropriate for clinical use and continuous infusions may be associated with increased risk of emergence of antimicrobial resistance. This study has provided the pharmacodynamic evidence to inform an optimized neonatal dosage regimen to take into a randomized controlled trial.


Antimicrobial Agents and Chemotherapy | 2016

Pharmacodynamics of Isavuconazole in a Dynamic In vitro Model of Invasive Pulmonary Aspergillosis

Helen Box; Adam Johnson; Laura McEntee; Timothy W. Felton; Sarah Whalley; Joanne Goodwin; William W. Hope

ABSTRACT Isavuconazonium sulfate is a novel triazole prodrug that has been recently approved for the treatment of invasive aspergillosis by the FDA. The active moiety (isavuconazole) has a broad spectrum of activity against many pathogenic fungi. This study utilized a dynamic in vitro model of the human alveolus to describe the pharmacodynamics of isavuconazole against two wild-type and two previously defined azole-resistant isolates of Aspergillus fumigatus. A human-like concentration-time profile for isavuconazole was generated. MICs were determined using CLSI and EUCAST methodologies. Galactomannan was used as a measure of fungal burden. Target values for the area under the concentration-time curve (AUC)/MIC were calculated using a population pharmacokinetics-pharmacodynamics (PK-PD) mathematical model. Isolates with higher MICs required higher AUCs in order to achieve maximal suppression of galactomannan. The AUC/MIC targets necessary to achieve 90% probability of galactomannan suppression of <1 were 11.40 and 11.20 for EUCAST and CLSI, respectively.


Antimicrobial Agents and Chemotherapy | 2017

Pharmacodynamics of aerosolized fosfomycin and amikacin against resistant clinical isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae in a hollow-fiber infection model: Experimental Basis for Combination Therapy

Fekade Bruck Sime; Adam Johnson; Sarah Whalley; Anahi Santoyo-Castelazo; Kathie Ann Walters; Jeffrey Lipman; William W. Hope; Jason A. Roberts

ABSTRACT There has been a resurgence of interest in aerosolization of antibiotics for treatment of patients with severe pneumonia caused by multidrug-resistant pathogens. A combination formulation of amikacin-fosfomycin is currently undergoing clinical testing although the exposure-response relationships of these drugs have not been fully characterized. The aim of this study was to describe the individual and combined antibacterial effects of simulated epithelial lining fluid exposures of aerosolized amikacin and fosfomycin against resistant clinical isolates of Pseudomonas aeruginosa (MICs of 16 mg/liter and 64 mg/liter) and Klebsiella pneumoniae (MICs of 2 mg/liter and 64 mg/liter) using a dynamic hollow-fiber infection model over 7 days. Targeted peak concentrations of 300 mg/liter amikacin and/or 1,200 mg/liter fosfomycin as a 12-hourly dosing regimens were used. Quantitative cultures were performed to describe changes in concentrations of the total and resistant bacterial populations. The targeted starting inoculum was 108 CFU/ml for both strains. We observed that neither amikacin nor fosfomycin monotherapy was bactericidal against P. aeruginosa while both were associated with rapid amplification of resistant P. aeruginosa strains (about 108 to 109 CFU/ml within 24 to 48 h). For K. pneumoniae, amikacin but not fosfomycin was bactericidal. When both drugs were combined, a rapid killing was observed for P. aeruginosa and K. pneumoniae (6-log kill within 24 h). Furthermore, the combination of amikacin and fosfomycin effectively suppressed growth of resistant strains of P. aeruginosa and K. pneumoniae. In conclusion, the combination of amikacin and fosfomycin was effective at maximizing bacterial killing and suppressing emergence of resistance against these clinical isolates.


The Journal of Infectious Diseases | 2018

Pharmacodynamics of the Novel Antifungal Agent F901318 for Acute Sinopulmonary Aspergillosis Caused by Aspergillus flavus

Clara Negri; Adam Johnson; Laura McEntee; Helen Box; Sarah Whalley; Julie Schwartz; Ramos-Martín; Ruwanthi Kolamunnage-Dona; Arnaldo Lopes Colombo; William W. Hope

F901318 is an orotomide, which is a new class of antifungal agent with activity against Aspergillus spp. Here, we describe the pharmacodynamics of F901318 against Aspergillus flavus and define the drug exposure targets required for efficacy in clinical studies.


Mbio | 2017

Pharmacodynamics of the Orotomides against Aspergillus fumigatus: New Opportunities for Treatment of Multidrug-Resistant Fungal Disease

William W. Hope; Laura McEntee; Sarah Whalley; Adam Johnson; Nicola Farrington; Ruwanthi Kolamunnage-Dona; Julie Schwartz; Derek Law; Michael Birch; John H. Rex

ABSTRACT F901318 is an antifungal agent with a novel mechanism of action and potent activity against Aspergillus spp. An understanding of the pharmacodynamics (PD) of F901318 is required for selection of effective regimens for study in phase II and III clinical trials. Neutropenic murine and rabbit models of invasive pulmonary aspergillosis were used. The primary PD endpoint was serum galactomannan. The relationships between drug exposure and the impacts of dose fractionation on galactomannan, survival, and histopathology were determined. The results were benchmarked against a clinically relevant exposure of posaconazole. In the murine model, administration of a total daily dose of 24 mg/kg of body weight produced consistently better responses with increasingly fractionated regimens. The ratio of the minimum total plasma concentration/MIC (Cmin/MIC) was the PD index that best linked drug exposure with observed effect. An average Cmin (mg/liter) and Cmin/MIC of 0.3 and 9.1, respectively, resulted in antifungal effects equivalent to the effect of posaconazole at the upper boundary of its expected human exposures. This pattern was confirmed in a rabbit model, where Cmin and Cmin/MIC targets of 0.1 and 3.3, respectively, produced effects previously reported for expected human exposures of isavuconazole. These targets were independent of triazole susceptibility. The pattern of maximal effect evident with these drug exposure targets was also apparent when survival and histopathological clearance were used as study endpoints. F901318 exhibits time-dependent antifungal activity. The PD targets can now be used to select regimens for phase II and III clinical trials. IMPORTANCE Invasive fungal infections are common and often lethal. There are relatively few antifungal agents licensed for clinical use. Antifungal drug toxicity and the emergence of drug resistance make the treatment of these infections very challenging. F901318 is the first in a new class of antifungal agents called the orotomides. This class has a novel mechanism of action that involves the inhibition of the fungal enzyme dihydroorotate dehydrogenase. F901318 is being developed for clinical use. A deep understanding of the relationship between dosages, drug concentrations in the body, and the antifungal effect is fundamental to the identification of the regimens to administer to patients with invasive fungal infections. This study provides the necessary information to ensure that the right dose of F901318 is used the first time. Such an approach considerably reduces the risks in drug development programs and ensures that patients with few therapeutic options can receive potentially life-saving antifungal therapy at the earliest opportunity. Invasive fungal infections are common and often lethal. There are relatively few antifungal agents licensed for clinical use. Antifungal drug toxicity and the emergence of drug resistance make the treatment of these infections very challenging. F901318 is the first in a new class of antifungal agents called the orotomides. This class has a novel mechanism of action that involves the inhibition of the fungal enzyme dihydroorotate dehydrogenase. F901318 is being developed for clinical use. A deep understanding of the relationship between dosages, drug concentrations in the body, and the antifungal effect is fundamental to the identification of the regimens to administer to patients with invasive fungal infections. This study provides the necessary information to ensure that the right dose of F901318 is used the first time. Such an approach considerably reduces the risks in drug development programs and ensures that patients with few therapeutic options can receive potentially life-saving antifungal therapy at the earliest opportunity.


Antimicrobial Agents and Chemotherapy | 2017

Experimental Models of Short Courses of Liposomal Amphotericin B for Induction Therapy for Cryptococcal Meningitis

Jodi M. Lestner; Laura McEntee; Adam Johnson; Sarah Whalley; Julie Schwartz; John R. Perfect; Thomas S. Harrison; William W. Hope

ABSTRACT Cryptococcal meningoencephalitis is a rapidly lethal infection in immunocompromised patients. Induction regimens are usually administered for 2 weeks. The shortest effective period of induction therapy with liposomal amphotericin B (LAMB) is unknown. The pharmacodynamics of LAMB were studied in murine and rabbit models of cryptococcal meningoencephalitis. The concentrations of LAMB in the plasma and brains of mice were measured using high-performance liquid chromatography (HPLC). Histopathological changes were determined. The penetration of LAMB into the brain was determined by immunohistochemistry using an antibody directed to amphotericin B. A dose-dependent decline in fungal burden was observed in the brains of mice, with near-maximal efficacy achieved with LAMB at 10 to 20 mg/kg/day. The terminal elimination half-life in the brain was 133 h. The pharmacodynamics of a single dose of 20 mg/kg was the same as that of 20 mg/kg/day administered for 2 weeks. Changes in quantitative counts were reflected by histopathological changes in the brain. Three doses of LAMB at 5 mg/kg/day in rabbits were required to achieve fungicidal activity in cerebrospinal fluid (cumulative area under the concentration-time curve, 2,500 mg · h/liter). Amphotericin B was visible in the intra- and perivascular spaces, the leptomeninges, and the choroid plexus. The prolonged mean residence time of amphotericin B in the brain suggests that abbreviated induction regimens of LAMB are possible for cryptococcal meningoencephalitis.


Antimicrobial Agents and Chemotherapy | 2017

Fluconazole Pharmacokinetics in Galleria mellonella Larvae and Performance Evaluation of a Bioassay Compared to Liquid Chromatography-Tandem Mass Spectrometry for Hemolymph Specimens

Karen Marie Thyssen Astvad; Joseph Meletiadis; Sarah Whalley; Maiken Cavling Arendrup

ABSTRACT The invertebrate model organism Galleria mellonella can be used to assess the efficacy of treatment of fungal infection. The fluconazole dose best mimicking human exposure during licensed dosing is unknown. We validated a bioassay for fluconazole detection in hemolymph and determined the fluconazole pharmacokinetics and pharmacodynamics in larval hemolymph in order to estimate a humanized dose for future experiments. A bioassay using 4-mm agar wells, 20 μl hemolymph, and the hypersusceptible Candida albicans DSY2621 was established and compared to a validated liquid chromatography-tandem mass spectrometry (LC–MS-MS) method. G. mellonella larvae were injected with fluconazole (5, 10, and 20 mg/kg of larval weight), and hemolymph was harvested for 24 h for pharmacokinetics calculations. The exposure was compared to the human exposure during standard licensed dosing. The bioassay had a linear standard curve between 1 and 20 mg/liter. Accuracy and coefficients of variation (percent) values were below 10%. The Spearman coefficient between assays was 0.94. Fluconazole larval pharmacokinetics followed one-compartment linear kinetics, with the 24-h area under the hemolymph concentration-time curve (AUC24 h) being 93, 173, and 406 mg · h/liter for the three doses compared to 400 mg · h/liter in humans under licensed treatment. In conclusion, a bioassay was validated for fluconazole determination in hemolymph. The pharmacokinetics was linear. An exposure comparable to the human exposure during standard licensed dosing was obtained with 20 mg/kg.


Antimicrobial Agents and Chemotherapy | 2018

Pharmacodynamics of Flubendazole for Cryptococcal Meningoencephalitis: Repurposing and Reformulation of an Anti-Parasitic Agent for a Neglected Fungal Disease

Gemma L. Nixon; Laura McEntee; Adam Johnson; Nikki Farrington; Sarah Whalley; Cristien Natal; Gina Washbourn; Jaclyn Bibby; Neil G. Berry; Jodi M. Lestner; Megan Truong; Andrew Owen; David G. Lalloo; Ian G. Charles; William W. Hope

Current therapeutic options for cryptococcal meningitis are limited by toxicity, global supply and emergence of resistance. There is an urgent need to develop additional antifungal agents that are fungicidal within the central nervous system and preferably orally bioavailable. The benzimidazoles have broad-spectrum anti-parasitic activity, but also have in vitro antifungal activity that includes Cryptococcus neoformans. Flubendazole (a benzimidazole) has been reformulated by Janssen Pharmaceutica as an amorphous solid drug nanodispersion to develop an orally bioavailable medicine for the treatment of neglected tropical diseases such as onchocerciasis. We investigated the in vitro activity, the structure-activity-relationships and both in vitro and in vivo pharmacodynamics of flubendazole for cryptococcal meningitis. Flubendazole has potent in vitro activity against Cryptococcus neoformans with a modal MIC of 0.125 mg/L using European Committee for Antimicrobial Susceptibility Testing (EUCAST) methodology. Computer models provided an insight into the residues responsible for the binding of flubendazole to cryptococcal s-tubulin. Rapid fungicidal activity was evident in a hollow fiber infection model of cryptococcal meningitis. The solid drug nanodispersion was orally bioavailable in mice with higher drug exposure in the cerebrum. The maximal dose of flubendazole (12 mg/kg/day) orally resulted in a ~2 log10CFU/g reduction in fungal burden compared with vehicle-treated controls. Flubendazole was orally bioavailable in rabbits, but there were no quantifiable drug concentrations in the CSF or cerebrum and no antifungal activity was demonstrated in either CSF or cerebrum. These studies provide evidence for the further study and development of the benzimidazole scaffold for the treatment of cryptococcal meningitis.ABSTRACT Current therapeutic options for cryptococcal meningitis are limited by toxicity, global supply, and emergence of resistance. There is an urgent need to develop additional antifungal agents that are fungicidal within the central nervous system and preferably orally bioavailable. The benzimidazoles have broad-spectrum antiparasitic activity but also have in vitro antifungal activity that includes Cryptococcus neoformans. Flubendazole (a benzimidazole) has been reformulated by Janssen Pharmaceutica as an amorphous solid drug nanodispersion to develop an orally bioavailable medicine for the treatment of neglected tropical diseases such as onchocerciasis. We investigated the in vitro activity, the structure-activity-relationships, and both in vitro and in vivo pharmacodynamics of flubendazole for cryptococcal meningitis. Flubendazole has potent in vitro activity against Cryptococcus neoformans, with a modal MIC of 0.125 mg/liter using European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology. Computer models provided an insight into the residues responsible for the binding of flubendazole to cryptococcal β-tubulin. Rapid fungicidal activity was evident in a hollow-fiber infection model of cryptococcal meningitis. The solid drug nanodispersion was orally bioavailable in mice with higher drug exposure in the cerebrum. The maximal dose of flubendazole (12 mg/kg of body weight/day) orally resulted in an ∼2 log10CFU/g reduction in fungal burden compared with that in vehicle-treated controls. Flubendazole was orally bioavailable in rabbits, but there were no quantifiable drug concentrations in the cerebrospinal fluid (CSF) or cerebrum and no antifungal activity was demonstrated in either CSF or cerebrum. These studies provide evidence for the further study and development of the benzimidazole scaffold for the treatment of cryptococcal meningitis.

Collaboration


Dive into the Sarah Whalley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Box

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Schwartz

Charles River Laboratories

View shared research outputs
Top Co-Authors

Avatar

Andrew Owen

University of Liverpool

View shared research outputs
Researchain Logo
Decentralizing Knowledge